Course Outline

COURSE: HVAC 202 DIVISION: 50 ALSO LISTED AS:

TERM EFFECTIVE: Fall 2020 CURRICULUM APPROVAL DATE: 06/09/2020

SHORT TITLE: BASIC REFRIGERATION

LONG TITLE: Basic Refrigeration

<table>
<thead>
<tr>
<th>Units</th>
<th>Number of Weeks</th>
<th>Type</th>
<th>Contact Hours/Week</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>18</td>
<td>Lecture: 3</td>
<td>54</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab: 3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other: 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 6</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION:

Students will study concepts of the vapor compression refrigeration system. The course includes both the theory and practice applicable to the mechanical function of air conditioning and refrigeration systems. The student will learn the major components and accessories of the sealed system including metering devices, evaporators, compressors and condensers. The practices for oxy-acetylene torch safety are emphasized along with different techniques for connecting tubing such as brazing and soldering copper refrigerant lines and the proper procedures for cutting, bending, swaging and flaring.

PREREQUISITES:

COREQUISITES:

CREDIT STATUS: D - Credit - Degree Applicable

GRADING MODES

L - Standard Letter Grade

REPEATABILITY: N - Course may not be repeated

6/2/2020
SCHEDULE TYPES:
- 02 - Lecture and/or discussion
- 03 - Lecture/Laboratory
- 04 - Laboratory/Studio/Activity
- 04A - Laboratory - LEH 0.65
- 05 - Hybrid
- 71 - Dist. Ed Internet Simultaneous
- 72 - Dist. Ed Internet Delayed
- 73 - Dist. Ed Internet Delayed LAB
- 73A - Dist. Ed Internet LAB-LEH 0.65

STUDENT LEARNING OUTCOMES:
1. Demonstrate proper torch safety.
 Measure of assessment: demonstration
 Year assessed, or planned year of assessment: 2018
 Semester: Fall

2. Evaluate, troubleshoot and repair a mechanical refrigeration system.
 Measure of assessment: demonstration, exam, homework
 Year assessed, or planned year of assessment: 2018
 Semester: Fall

3. Select and install safety and control switches to a mechanical refrigeration system.
 Measure of assessment: demonstration, exam
 Year assessed, or planned year of assessment: 2018
 Semester: Fall

4. Evacuate, charge and test refrigerant.
 Measure of assessment: demonstration, exam
 Year assessed, or planned year of assessment: 2018
 Semester: Fall

CONTENT, STUDENT PERFORMANCE OBJECTIVES, OUT-OF-CLASS ASSIGNMENTS
Curriculum Approval Date: 06/09/2020
Lecture Content:
6 Hours
Content: Hand Tools, Equipment and Safety
Student Performance Objectives: Describe hand tools used by the air-conditioning, heating, and refrigeration technician. Describe equipment used to install and service air-conditioning, heating, and refrigeration systems. Describe equipment and tools used by residential energy auditors. Describe proper procedures for working with pressurized systems and vessels, electrical energy, heat, cold, rotating machinery, and chemicals; for moving heavy objects; and for utilizing proper ventilation.
9 Hours
Student Performance Objectives: Define temperature. Make conversions between the Fahrenheit and Celsius scales. Describe molecular motion at absolute zero. Define the British thermal unit. Describe heat flow between substances of different temperatures. Explain the transfer of heat by conduction, convection, and radiation. Discuss sensible heat, latent heat, and specific heat. State atmospheric pressure at sea level and explain why it varies at different elevations. Describe two types of barometers. Explain psig and psia as they apply to pressure measurements. Define matter and density. List the three states in which matter is commonly found. State two forms of energy important to the air-conditioning (heating and cooling) and refrigeration industry.

12 Hours
Content: Brazing, Soldering, Pipe and Tube Fitting, Measurement of ACR Pipes and Tubing, Practical Use of Oxygen/Acetylene Torch, Pipe Bending, Flaring, Swaging
Student Performance Objectives: List the different types of tubing used in heating, air-conditioning, and refrigeration applications. Describe two common ways of cutting copper tubing. List procedures used for bending tubing. Discuss procedures used for soldering and brazing tubing. Describe two methods for making flared joints. State procedures for making swaged joints. Explain how a compression fitting is made. Describe procedures for preparing and threading steel pipe ends. List four types of plastic pipe and describe uses for each. Describe alternative, mechanical methods for joining pipe sections.

15 Hours
Student Performance Objectives: Discuss applications for medium- and low-temperature refrigeration. Describe the basic refrigeration cycle. Describe the function of the evaporator or cooling coil. Explain the purpose of the compressor. Discuss the function of the condensing coil. State the purpose of the metering devise. List four characteristics to consider when choosing a refrigerant for a system. Discuss different refrigerants and their applications. Describe how refrigerants can be stored or processed while refrigeration systems are being serviced.

9 Hours
Content: Controls and Safeties, Adjustment of Controls and Safety Switches, Calibration of Pressure Switches, Troubleshooting and Refrigerant Charging Procedures, Measurement of Super Heat, Measurement of Sub Cooling, Evaporator Temperature Splits, Condenser Temperature Splits
Student Performance Objectives: Describe a standing pressure test. Describe the six classes of leaks. Explain the test procedures for evaporator and condenser section leaks. Explain the test procedures for suction and liquid-line leaks. Explain the test procedures for temperature-, pressure-, and vibration-dependent leaks. Describe a deep vacuum. Describe two different types of evacuation. Describe two different types of vacuum measuring instruments. List some of the proper evacuation practices. Describe a deep-vacuum single evacuation. Describe a triple evacuation. Explain the process involved in cleaning a system after a hermetic motor burnout.

2 Hours
Final Lab Content:

6 Hours
Content: Use of Hand Tools, Equipment and Safety
Student Performance Objectives: Practice working safely and avoiding safety hazards. Demonstrate the proper use of hand tools used by the air-conditioning, heating, and refrigeration technician. Demonstrate the proper use of equipment used to install and service air-conditioning, heating, and refrigeration systems.

9 Hours
Student Performance Objectives: Identify four types of temperature scales. Identify and demonstrate the use of the two common gauges used in the air-conditioning, heating, and refrigeration industry.
12 Hours
Content: Brazing, Soldering, Pipe and Tube Fitting, Measurement of ACR Pipes and Tubing, Practical Use of Oxygen/Acetylene Torch, Pipe Bending, Flaring, Swaging

15 Hours
Student Performance Objectives: Interpret the effects of low air flow. Appraise refrigeration plant running conditions. Identify common refrigeration problems. Perform various troubleshooting exercises.

9 Hours
Content: Troubleshooting and Refrigerant Charging Procedures, Adjustment of Metering Devices for Acceptable Super Heat and Sub Cooling Measurements,
Student Performance Objectives: Perform a standing pressure test. Demonstrate the test procedures for evaporator and condenser section leaks. Demonstrate the test procedures for suction and liquid-line leaks. Demonstrate the test procedures for temperature-, pressure-, and vibration-dependent leaks. Choose a leak detector for a particular type of leak. Choose the correct high-vacuum pump. Perform various troubleshooting exercises.

2 Hours
Final

METHODS OF INSTRUCTION:
Lecture, discussion, multi-media presentation, demonstration, guided practice.

OUT OF CLASS ASSIGNMENTS:
Required Outside Hours: 12
Assignment Description: Read corresponding information in Units 4 and 5 of textbook. Complete Review Questions at end of Units. Study for quizzes/examinations.

Required Outside Hours: 18
Assignment Description: Read corresponding information in Units 1 and 2 of textbook. Complete Review Questions at end of Units. Study for quizzes/examinations. Homework: Worksheet on conversion calculations.

Required Outside Hours: 24
Assignment Description: Read corresponding information in Units 7 and 8 of textbook. Complete Review Questions at end of Units. Study for quizzes/examinations.

Required Outside Hours: 30
Assignment Description: Out of Class Assignments: Read corresponding information in Units 3 and 9 of textbook. Complete Review Questions at end of Units. Study for quizzes/examinations. Homework: Design, build, and test a refrigeration system. Perform various troubleshooting exercises.

Required Outside Hours: 18
Assignment Description: Out of Class Assignments: Read corresponding information in Unit 8 of textbook. Complete Review Questions at end of Unit. Study for quizzes/examinations. Homework: Perform various troubleshooting exercises.
METHODS OF EVALUATION:
Writing assignments
Percent of total grade: 20.00 %
Homework, Lab Reports
Problem-solving assignments
Percent of total grade: 20.00 %
Lab Projects
Skill demonstrations
Percent of total grade: 20.00 %
Lab Projects/Troubleshooting
Objective examinations
Percent of total grade: 40.00 %

REPRESENTATIVE TEXTBOOKS:
Required Representative Textbooks
ISBN: 978-1-305-57829-6
Reading Level of Text, Grade: 12thVerified by: MS Word
ISBN: 978-1305578708
Reading Level of Text, Grade: 12thVerified by: MS Word
ARTICULATION and CERTIFICATE INFORMATION

Associate Degree:
CSU GE:
IGETC:
CSU TRANSFER:
Not Transferable
UC TRANSFER:
Not Transferable

SUPPLEMENTAL DATA:
Basic Skills: N
Classification: Y
Noncredit Category: Y
Cooperative Education:
Program Status: 1 Program Applicable
Special Class Status: N
CAN:
CAN Sequence:
CSU Crosswalk Course Department:
CSU Crosswalk Course Number:
Prior to College Level: Y
Non Credit Enhanced Funding: N
Funding Agency Code: Y
In-Service: N
Occupational Course: C
Maximum Hours: 6
Minimum Hours: 6
Course Control Number: CCC000587351
Sports/Physical Education Course: N
Taxonomy of Program: 094600