Initial Study

Gavilan College
Gilroy Campus Modernization Project

Prepared by

GAVILAN COLLEGE

September 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction and Purpose</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>Project Information</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Project Title</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Project Location</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>Project PropONENT and Lead Agency Contact</td>
<td>3</td>
</tr>
<tr>
<td>2.4</td>
<td>Assessor’s Parcel Numbers</td>
<td>3</td>
</tr>
<tr>
<td>2.5</td>
<td>Existing General Plan Designation and Zoning District</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>Project Description</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>Environmental Checklist and Discussion of Impacts</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Aesthetics</td>
<td>21</td>
</tr>
<tr>
<td>4.2</td>
<td>Agricultural and Forest Resources</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Air Quality</td>
<td>27</td>
</tr>
<tr>
<td>4.4</td>
<td>Biological Resources</td>
<td>33</td>
</tr>
<tr>
<td>4.5</td>
<td>Cultural Resources</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Geology</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Greenhouse Gas Emissions</td>
<td>72</td>
</tr>
<tr>
<td>4.8</td>
<td>Hazards and Hazardous Materials</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>Hydrology and Water Quality</td>
<td>82</td>
</tr>
<tr>
<td>4.10</td>
<td>Land Use</td>
<td>90</td>
</tr>
<tr>
<td>4.11</td>
<td>Mineral Resources</td>
<td>92</td>
</tr>
<tr>
<td>4.12</td>
<td>Noise</td>
<td>93</td>
</tr>
<tr>
<td>4.13</td>
<td>Population and Housing</td>
<td>97</td>
</tr>
<tr>
<td>4.14</td>
<td>Public Services</td>
<td>98</td>
</tr>
<tr>
<td>4.15</td>
<td>Recreation</td>
<td>100</td>
</tr>
<tr>
<td>4.16</td>
<td>Transportation</td>
<td>101</td>
</tr>
<tr>
<td>4.17</td>
<td>Utilities and Service Systems</td>
<td>104</td>
</tr>
<tr>
<td>4.18</td>
<td>Mandatory Findings of Significance</td>
<td>107</td>
</tr>
<tr>
<td>5.0</td>
<td>References</td>
<td>112</td>
</tr>
<tr>
<td>6.0</td>
<td>Lead Agency and Consultants</td>
<td>114</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Regional Map</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Vicinity Map</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Aerial Photograph and Surrounding Area</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Proposed Water Tanks</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Proposed Water Lines</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Buildings to be Removed and GECA Campus Consolidation Area</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Parking Lot C Expansion</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Outdoor Classroom Locations</td>
<td>16</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Native Plants Propagation Outdoor Classroom</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Wetlands Overlook Outdoor Classroom</td>
<td>18</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Pond Life Overlook Outdoor Classroom</td>
<td>19</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Riparian Habitat Outdoor Classroom</td>
<td>20</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Biotic Habitats</td>
<td>34</td>
</tr>
</tbody>
</table>

Photographs

<table>
<thead>
<tr>
<th>Photo</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo 1</td>
<td>Footpath Through Campus</td>
<td>21</td>
</tr>
<tr>
<td>Photo 2</td>
<td>Gavilan Creek</td>
<td>21</td>
</tr>
<tr>
<td>Photo 3</td>
<td>Existing Water Tank</td>
<td>22</td>
</tr>
<tr>
<td>Photo 4</td>
<td>Police Academy Portables</td>
<td>23</td>
</tr>
<tr>
<td>Photo 5</td>
<td>Building CJ500</td>
<td>23</td>
</tr>
<tr>
<td>Photo 6</td>
<td>Mayock House</td>
<td>64</td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.3-1</td>
<td>Santa Clara County Attainment Status</td>
<td>27</td>
</tr>
<tr>
<td>Table 4.3-2</td>
<td>Thresholds of Significance Used in Air Quality Analyses</td>
<td>30</td>
</tr>
<tr>
<td>Table 4.4-1</td>
<td>Impacts to Special-Status Species</td>
<td>45</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Biological Resources Report</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Archaeological Resources Reports</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Geotechnical Investigation</td>
</tr>
</tbody>
</table>
SECTION 1.0 INTRODUCTION AND PURPOSE

This Initial Study of environmental impacts is being prepared to conform to the requirements of the California Environmental Quality Act (CEQA) (Public Resources Code §§21000 et seq.), the CEQA Guidelines (California Code of Regulations, Title 14, §§15000 et seq.), and the regulations and policies of the Gavilan Joint Community College District. This Initial Study evaluates the potential environmental impacts which might reasonably be anticipated to result from implementation of the proposed Gavilan College Gilroy Campus Modernization Project.

The Gavilan Joint Community College District is the Lead Agency under CEQA and has prepared this Initial Study to address the environmental impacts of implementing the proposed project. This Initial Study will be used to obtain a Mitigated Negative Declaration (MND) for the project, which determines that with the implementation of mitigation and standard measures identified, the project would not have a significant effect on the environment. The MND will be used to obtain the necessary permits and/or approvals for the proposed project, including those described in Section 4.4, Biological Resources, of this Initial Study.

SECTION 2.0 PROJECT INFORMATION

2.1 PROJECT TITLE

Gavilan College Gilroy Campus Modernization Project

2.2 PROJECT LOCATION

The Gavilan College Gilroy Campus is located on the west side of Santa Teresa Boulevard, between Mesa Road and Castro Valley Road, in the unincorporated area of Santa Clara County, south of the City of Gilroy. A regional map and a vicinity map of the site are shown on Figures 1 and 2, and an aerial photograph of the project site and the surrounding area is shown on Figure 3.

2.3 PROJECT PROONENT AND LEAD AGENCY CONTACT

Joseph Keeler, Vice President of Administrative Services
Gavilan College
5055 Santa Teresa Blvd.
Gilroy, CA 95020
(408) 848-4715

2.4 ASSESSOR’S PARCEL NUMBERS

810-34-001, -002, and -003

2.5 EXISTING GENERAL PLAN DESIGNATION AND ZONING DISTRICT

General Plan: Educational Facility (City of Gilroy)
Zoning District: A-20Ac-d1-sr and A-20Ac-sr (Agricultural) (Santa Clara County)
SECTION 3.0 PROJECT DESCRIPTION

3.1 BACKGROUND AND ENVIRONMENTAL SETTING

Gavilan Community College was originally established in 1919 as San Benito County Junior College. It operated under this title until 1963, when a new community college district was formed that included both San Benito and southern Santa Clara Counties. The present Gavilan Joint Community College District serves residents of the Gilroy Unified, Morgan Hill Unified, Aromas-San Juan Unified, and San Benito Joint Union High School Districts. The Gavilan Joint Community College District is comprised of approximately 2,700 square miles in southern Santa Clara County and all of San Benito County.

The Gavilan Community College Campus in Gilroy, which is master-planned to accommodate an enrollment of 5,000 students, was initially developed in 1966 and is located near the intersection of Santa Teresa Boulevard and Castro Valley Road (refer to Figures 1-3). The campus is situated on a 150-acre site at the eastern base of the Santa Cruz Mountains, near the edge of the developed area of Gilroy. The campus is surrounded by natural oak woodland, with a low-density, landscaped interior. Expanses of agricultural land are located to the east.

3.2 DESCRIPTION OF THE PROPOSED PROJECT

Gavilan Community College (hereafter Gavilan) currently seeks to implement several facilities and infrastructure upgrades at the Gilroy campus, including the following:

- Water Storage, Tank Distribution, and Well Improvements
- Gilroy Early College Academy (GECA) Consolidation
- Parking Lot C Expansion
- Outdoor Classrooms
- Demolition of Former Police Academy Portables
- Demolition of Building CJ500

These activities are shown on Figures 4-12 and described in further detail below.

3.2.1 Water Storage Tank, Distribution, and Well Improvements

Gavilan proposes to build a replacement water system for the irrigation and fire demands at the campus. The project would replace the existing 1,000,000 gallon water tank with two new 669,000 gallon reservoir tanks at the same location in the foothills above the campus. Water supply to the tanks would be provided by implementing improvements to the existing well and installing an additional well directly to the east to provide supplemental water supply (Option A). Installing two new wells adjacent to Mesa Road in the agricultural fields east of the project site, while decommissioning the existing well, was initially considered (Option B). However, due to failure to reach an agreement with neighboring landowners, this option may not be feasible. In each option, two wells would only be run simultaneously after a fire event; in normal operation the wells would alternate in service. Either option would be capable of delivering adequate water supply to re-fill the water tanks within the National Fire Protection Association requirement of eight hours. In Option B,
the existing well will be capped and abandoned in accordance with local regulatory requirements, or
given to the land owner. The water supply system would allow a portable generator to be connected
to the well, if the public utility power source is unavailable for several days.

A new water piping distribution system would be installed throughout the campus to provide separate
irrigation/fire and domestic loops, meeting current fire codes. The pipeline would vary between 8-
inches and 12-inches in diameter, the trench would be two feet in width, and the pipe would have
three feet of dirt cover. If additional water treatment is needed, a small treatment facility would be
installed in the campus maintenance area at the north end of the site. Figure 4 provides detailed
drawings of the new water tanks, and Figure 5 shows the locations of the new water distribution lines
and wells.

As noted above, the new water tanks would be installed in the foothills above the campus, at the
same location as the existing water tank. The two tanks would be installed on an enlarged, oval-
shaped asphalt pad that would require grading back the slope approximately 70 feet, to provide a 2:1
slope above a 5-foot tall retaining wall. Approximately 1,550 cubic yards of soil would be cut from
the slope for construction of the enlarged tank pad. The first new water tank, located on the upslope
side of the asphalt pad, would be installed and operable before the existing tank is demolished. The
second tank would be installed at the location of the existing tank. The new tanks would be 33
feet in height. Twelve 24-inch box oak trees would be planted in front of the tank pad, to provide visual
screening of the tank.

The overall duration of the replacement water system construction would be 11-12 months.

3.2.2 GECA Campus Consolidation

The Dr. T.J. Owens Gilroy Early College Academy (GECA) is an existing educational partnership
between Gilroy Unified School District and Gavilan. GECA is an academically accelerated high
school program where students in grades 9-12 take some classes that are comprised only of high
school students, but also take college-level classes with the rest of the Gavilan student body.

The existing GECA facilities, located centrally along the east (Santa Teresa Boulevard) side of the
Gavilan Campus, would be consolidated in the same general area and situated around a central
courtyard, expanding out into a portion of the Parking Lot C (refer to Figure 6). Parking Lot C
would extend southward as a result, as described below. The project would demolish six existing
GECA portables and relocate 10 portables to the GECA site. The GECA Campus would continue to
operate generally between 8:00 AM and 2:30 PM, Monday through Friday. The portables to be used
for the GECA campus would be relocated from elsewhere on the Gavilan College campus, and thus
do not represent a net increase in building space or student capacity for the college.

3.2.3 Parking Lot C Expansion

Parking Lot C is located on the east side of the Gavilan campus adjacent to Santa Teresa Road. Due
to the loss of parking capacity resulting from the GECA campus consolidation, Gavilan proposes to
expand Parking Lot C south to the existing dirt area near the Campus Loop Road’s southern Santa
Teresa Boulevard entrance. While the existing Parking Lot C layout is accessed only from the north,
the expanded Parking Lot C would be accessible both from the north and the south. At the south end
of the parking lot expansion, a new two-way driveway would connect to Campus Loop Road,
creating an intersection with the golf course/Club House Drive (refer to Figure 7). The parking lot expansion would include 125 parking spaces and a new campus entry monument sign and would be surrounded by a landscape berm. The expanded Parking Lot C would comprise approximately 45,500 square feet of additional pavement. Expansion of Parking Lot C would include construction of a new catch basin and filling of the existing drainage overflow/outlet from the adjacent stormwater detention pond (often referred to as the “duck pond”). The storm flow from the detention pond would be carried in a new storm drain pipe under the parking lot to a new drainage swale adjacent to Santa Teresa Boulevard.

3.2.4 Outdoor Classrooms

Gavilan was awarded a Science, Technology, Engineering, and Mathematics (STEM) grant in September 2011. Gavilan proposes to utilize the STEM grant to fund the creation of an Environmental Research Center (ERC), which will include outdoor classrooms, demonstration areas, and an arboretum. The purpose of the ERC will be to further utilize the unique outdoor spaces on the Gavilan campus and integrate some of these spaces into the STEM curriculum for a proposed Environmental Science program.

The Gavilan Gilroy Campus contains areas that include wetlands and riparian habitat, as well as oak woodland, valley grassland, and central California chaparral plant communities. The proposed outdoor classrooms would allow classes to be taught focusing on these plant communities, and would also allow the opportunity to restore and maintain these habitats, as well as provide unique opportunities for students to study hands-on application of environmental protection.

A description of each proposed outdoor classroom is included below, and a map showing their locations is included as Figure 8 of this Initial Study.

Native Plant Propagation Outdoor Classroom. This outdoor classroom, located at the north end of the campus behind the security/maintenance area, would consist of approximately 0.3 acres of fenced space for propagation of native plants. It would also include storage for tools, irrigation, and power supply as required for plant propagation (refer to Figure 9).

Wetlands Overlook Outdoor Classroom. This outdoor classroom, located in the southwest corner of the campus, would comprise an approximate 30’ x 30’ raised deck, located on the slope just below the historic chapel\(^1\), with multi-level stepped, amphitheater seating overlooking a pond that includes water plants and animals. The classroom would include seating for 25 students (refer to Figure 10). This classroom would also include construction of an ADA-compliant paved pathway from Campus Loop Road up to the Mayock House and classroom.

Pond Life Overlook Outdoor Classroom. This classroom will take advantage of a natural amphitheater setting, located on the northwest slope of the lower detention “duck pond”. Seating will be on boulders placed at multiple levels on the site around an approximate 30’ x 30’ area, seating 30 students. This site will overlook the lower detention/”duck” pond that is used by migrating birds and pond animals (refer to Figure 11).

\(^1\) Refer to Section 4.5 Cultural Resources for a detailed discussion of the chapel.
Riparian Habitat Outdoor Classroom. This classroom will utilize an existing relatively flat area that borders Gavilan Creek, which connects several man-made ponds found on the south side of the campus, just south of Campus Loop Road. The 30’ x 45’ area is shaded, and seating for 30 students will be provided by a group of tables and benches (refer to Figure 12). The floor area of the classroom would be covered with interlocking pavers, as part of the project. Two additional locations to be used as demonstration areas for the STEM curriculum are described below.

Seasonal Pond. The seasonal pond demonstration area, located in the northwest area of the campus, encompasses a small seasonal pond, grassland and an adjacent hillside with native oaks and chaparral. This area is currently mowed and disked as a part of Gavilan’s fire prevention strategy. It is hoped that alternative methods of fire prevention management can be instigated to improve estivation\(^2\) habitat for California tiger salamander, an endangered species known to occur in such habitat. The native oaks and chaparral on the adjacent hillside are also valuable for study (refer to Figure 8 for location).

Meadow Restoration. The proposed meadow restoration area is a relatively flat area, located west of Parking Lot E, approximately 160 feet east of the "cattle pond". As a part of the college fire prevention strategy, the proposed meadow restoration area is currently mowed and disked. The area contains non-native grasses and herbaceous plants, and includes a native oak. There are views of the campus and distant valley from this location. It is hoped that the native grasses and herbs can be restored in this area to improve estivation habitat for California tiger salamander (refer to Figure 8 for location).

In addition to the outdoor classrooms and demonstration areas described above, the STEM grant would be utilized to install paved, ADA-compliant pathways linking the ERC facilities to the rest of campus. An arboretum would also be established, which would consist of identifying trees along pathways with tags for educational purposes.

Additionally, an unpaved sloped area adjacent to the tennis courts, which is currently subject to erosion during rain events, would be utilized as part of the STEM curriculum to demonstrate erosion control methods. No development would occur in this area, but various methods of erosion control will be implemented for educational purposes.

3.2.5 Portables Demolition

The project proposes to demolish four existing relocatable buildings at the north end of the campus, in the location of the former police academy (refer to Figure 6). The project would replace these structures in the future with other relocatable buildings from elsewhere on the campus. The demolition will include removal of the existing foundations and future construction of new concrete foundations. No excavation will occur other than to construct the new foundations and locate existing water and sewer lines for hook-ups. Since the replacements will be from elsewhere on-campus, they do not represent a net increase in building space or student capacity for the college.

\(^2\) California Tiger Salamanders (CTS) spend the dry summer season underground in a dormant state which is called estivation.
3.2.6 Building CJ500 Demolition

Gavilan proposes to demolish Building CJ500, which is adjacent to the tennis courts. The concrete slab foundation would remain (refer to Figure 6).
GECA Campus
Consolidation
Building To Be
Removed/Demolished

BUILDINGS TO BE REMOVED AND GECA CAMPUS CONSOLIDATION AREA

FIGURE 6
FIGURE 8 OUTDOOR CLASSROOM LOCATIONS

- Meadow Restoration Demonstration Area
- Seasonal Pond Demonstration Area
- Native Plants Propogation Outdoor Classroom
- Wetlands Overlook Outdoor Classroom
- Riparian Habitat Outdoor Classroom
- Pond Life Overlook Outdoor Classroom
FIGURE 9
NATIVE PLANTS PROPAGATION OUTDOOR CLASSROOM
FIGURE 11 POND LIFE OVERLOOK OUTDOOR CLASSROOM
FIGURE 12 RIPARIAN HABITAT OUTDOOR CLASSROOM
SECTION 4.0 ENVIRONMENTAL CHECKLIST AND DISCUSSION OF IMPACTS

This section describes the existing environmental conditions on and near the project area, as well as environmental impacts associated with the proposed project. The environmental checklist, as recommended in the California Environmental Quality Act (CEQA) Guidelines, identifies environmental impacts that could occur if the proposed project is implemented. For each checklist question, the project’s impacts are identified as one of the following: significant, less than significant with the incorporation of mitigation, less than significant, no impact, or beneficial.

The right-hand column in the checklist lists the source(s) for the answer to each question. The sources cited are identified at the end of this section. Mitigation measures are identified for all significant project impacts. “Mitigation Measures” are measures that will minimize, avoid, or eliminate a significant impact (CEQA Guidelines, §15370).

4.1 AESTHETICS

4.1.1 Existing Setting

The 150-acre Gavilan campus is located on the west side of Santa Teresa Boulevard, between Mesa Road and Castro Valley Road in the unincorporated area of Santa Clara County, south of Gilroy. The campus is nestled against the foothills that form the western boundary of the Santa Clara Valley. Single-family residential subdivisions border the site to the north, and agricultural fields are located across Santa Teresa Boulevard to the east. The area south of the campus is undeveloped agricultural land and open space.

The central portion of the campus consists of one- to two-story educational buildings constructed in a uniform architectural style that surround a series of grass fields interlinked with footpaths. Mature trees, including numerous oaks, are located throughout the campus, and often shield views of the buildings from any given location. Paved parking lots are located around the perimeter of the campus, as are various ancillary portable buildings. A wooded creek channel that links several man-made ponds runs downslope, east to west through the area south of the main campus. Athletic facilities, including ball fields, tennis courts, and a golf course, are located at the south end of the campus.

The water tank that provides water storage for the campus is located in the foothills to the west, at an elevation of approximately 435 feet. The water tank is visible from portions of Santa Teresa Boulevard and the residential subdivisions located north of the campus, but is often obscured by surrounding trees and foothills.
4.1.2 Environmental Checklist and Discussion of Impacts

AESTHETICS

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>2) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>3) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>4) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
</tbody>
</table>

4.1.2.1 Visual and Aesthetic Impacts

The project site is not located in the vicinity of a state scenic highway. The project proposes several facilities and infrastructure upgrades that will result in minor changes to the aesthetic character of the campus.

The project proposes to remove the existing 1,000,000 gallon water tank located in the foothills west of the campus and replace it with two 669,000 gallon tanks in the same location. The new tanks would be 33 feet in height with a base elevation of 435 feet, similar to the height and elevation of the existing tank. Although the project would alter views of the hillside from surrounding areas due to the additional tank, the new tank would be in a location where the existing water tank is currently part of the scenic vista. The project proposes to plant 12 screening oak trees on the eastern (downslope) side of the tank. Since the proposed tanks are in the same location and would be roughly the same height as the existing water tank, and with the inclusion of screening oak trees, the new water tanks would not substantially degrade the visual character of the site and its surroundings, nor would they have a substantial adverse effect on a scenic vista. The installation of underground water distribution lines and wells proposed by the project would not result in aesthetic changes to the project site and surrounding area because the distribution lines would be underground and the wells would be at ground-level.

Photo 3: Existing Water Tank
The proposed GECA Consolidation would replace existing portable buildings located west of Parking Lot C, which borders Santa Teresa Boulevard, with additional portable buildings in a U-shaped configuration around a central courtyard area. Because the new configuration would extend into the northern portion of Parking Lot C, the parking lot would be expanded south to compensate for the lost parking capacity. The expanded parking area would include landscaped islands and a landscaped berm around the perimeter. A new campus entry monument sign would be installed in the landscape berm. An undeveloped ruderal area would be paved to accommodate the parking lot expansion. Although these modifications would slightly alter views of the campus from Santa Teresa Boulevard, they would not substantially degrade the visual character of the site and its surroundings.

The remaining modifications proposed by the project, which are discussed below, would occur within the interior portions of the campus and would not be visible from the surrounding area.

The project proposes to construct four outdoor classrooms (refer to Section 3.2.4). Visual renderings of the proposed classrooms can be seen in Figures 9-12. The outdoor classrooms would introduce new structures and visual elements to the campus. The classrooms would be designed to incorporate the natural features of their surroundings, and would have a minimal visual impact. The addition of outdoor classrooms and seating areas would not represent a substantial visual change within the overall campus setting.

The project proposes the demolition of portable buildings associated with the former Police Academy, located on the north end of campus, as well as the demolition of Building CJ500 on the south end of campus (refer to Figure 6). The project proposes to replace the demolished Police Academy portable buildings in the future with portables from elsewhere on campus. The demolition activities would remove visual elements from the campus. In the case of the Police Academy portables, these structures would be replaced with buildings having a similar visual character. The removal of buildings and replacement with structures of similar height and character in the interior of the campus would not represent a substantial change to the aesthetic character of the project site.

Although the project would introduce new structures to portions of the campus, the operation of these facilities would not create a new source of substantial light or glare which would adversely affect day or nighttime views in the area. The outdoor classrooms would include minimal lighting, and would be utilized during daytime hours. Similarly, the GECA consolidation would add structures to an area already lit for security and safety purposes, and the new portables would include similar lighting. The expansion of Parking Lot C would increase the lighted parking area, but would not substantially increase the amount of light and glare in the project area.
4.1.3 Conclusion

The proposed project would have a less than significant visual and aesthetic impact. [Less Than Significant Impact]
4.2 AGRICULTURAL AND FOREST RESOURCES

4.2.1 Existing Setting

According to the Santa Clara County Important Farmlands 2010 Map, which was prepared pursuant to the Farmland Mapping and Monitoring Program (FMMP) of the California Resources Agency (CRA), the Gavilan Community College Gilroy Campus is designated as “Urban and Built-up Land,” which is defined as residential land with a density of at least six units per 10 acre parcel, as well as land used for industrial and commercial purposes, golf courses, landfills, airports, sewage treatment, and water control structures. The agricultural land across Santa Teresa Boulevard to the east is designated as “Prime Farmland”, with a small portion designated as “Unique Farmland”. Prime farmland is defined as having the best combination of physical and chemical features able to sustain long-term agricultural production. This land has the soil quality, growing season, and moisture supply needed to produce sustained high yields. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date. Unique farmland consists of lesser quality soils used for the production of the State's leading agricultural crops. This land is usually irrigated, but may include non-irrigated orchards or vineyards as found in some climatic zones in California. Land must have been cropped at some time during the four years prior to the mapping date.

The campus is not designated by the California Resources Agency as farmland of any type and is not the subject of a Williamson Act contract; however, one of the agricultural parcels across Santa Teresa Boulevard, in the vicinity of the existing and proposed wells associated with the campus, is the subject of a Williamson Act contract (APN 808-24-001). While the foothills west and south of the site would be considered forest land as defined in Public Resources Code section 12220(g), no land adjacent to the project site is designated or used as timberland.

4.2.2 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>AGRICULTURAL AND FOREST RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>1) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>1,3</td>
</tr>
</tbody>
</table>

3 The Williamson Act is a California law that provides relief of property tax to owners of farmland and open-space land in exchange for a ten-year agreement that the land will not be developed or otherwise converted to another use.
4.2.2.1 Agricultural and Forest Resources Impacts

The project site is developed with a college campus, and is not used or zoned for agricultural purposes. The site is not designated by the Department of Conservation as farmland of any type, and is not the subject of a Williamson Act contract.

The agricultural land east of the campus is designated as Prime and Unique Farmland, and one of the parcels is subject to a Williamson Act contract. The project proposes to install underground water distribution lines beneath an access road that traverses these properties, to be connected to two proposed wells that would be installed adjacent to the access road (refer to Figure 5). The installation of wells and underground water distribution lines would not result in the conversion of farmland to non-agricultural use.

As stated previously, no land adjacent to the project site is designated or used as timberland. While the foothills west and south of the campus are considered forest land as defined in Public Resources Code section 12220(g), the project would not conflict with existing zoning for forest land, nor would it result in the conversion of forest land to non-forest use.

4.2.3 Conclusion

The proposed project would have no impact on agricultural land, agricultural activities, or forest resources. [No Impact]
4.3 AIR QUALITY

4.3.1 Existing Setting

In recognition of the adverse effects of degraded air quality, Congress and the California Legislature enacted the Federal and California Clean Air Acts, respectively. As a result of these laws, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have established ambient air quality standards for what are commonly referred to as “criteria pollutants”. Criteria pollutants include carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide, and particulate matter.

According to the Bay Area Air Quality Management District (BAAQMD) CEQA Guidelines, three criteria pollutants are known to exceed the state and federal standards in the project area: ozone, particulates (PM$_{10}$), and carbon monoxide. Both ozone and PM$_{10}$ are considered regional pollutants, because their concentrations are not determined by proximity to individual sources, but show a relative uniformity over a region. Carbon monoxide is considered a local pollutant, because elevated concentrations are usually only found near the source (e.g., congested intersections).

4.3.1.1 Regional and Local Air Quality

The project site is located within the San Francisco Bay Area Air Basin. BAAQMD is the regional government agency that monitors and regulates air pollution within the air basin. According to the most current data available from BAAQMD (2008), state and federal standards for ozone and particulate matter less than or equal to 10 and 2.5 microns (PM$_{10}$ and PM$_{2.5}$) were exceeded several times in the last three years. Carbon monoxide and nitrogen dioxide standards have not been exceeded recently.

The Federal Clean Air Act and the California Clean Air Act require that the CARB, based on air quality monitoring data, designate portions of the state where the federal or state ambient air quality standard are not met as “nonattainment areas.” Because of the differences between the national and state standards, the designation of nonattainment areas is different under federal and state legislation. Table 4.3-1 displays the attainment status of Santa Clara County for regulated pollutants.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Federal Classification</th>
<th>State Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hour Ozone</td>
<td>--</td>
<td>Non-attainment, Serious</td>
</tr>
<tr>
<td>8-hour Ozone</td>
<td>Non-attainment, Marginal</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Attainment</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Non-attainment</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>CO</td>
<td>Maintenance</td>
<td>Attainment</td>
</tr>
<tr>
<td>NO$_{2}$</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>SO$_{2}$</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Lead</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
</tbody>
</table>
4.3.1.2 Bay Area 2010 Clean Air Plan

According to BAAQMD, a project would result in a significant air quality impact if it conflicts with or obstructs implementation of the applicable air quality plan. On March 11, 2010, BAAQMD released the Draft Bay Area 2010 Clean Air Plan (CAP), as well as a Draft Programmatic Environmental Impact Report on the CAP. At a public hearing on September 15, 2010, the Air District Board of Directors adopted the final Bay Area 2010 Clean Air Plan (CAP), and certified the Final Environmental Impact Report on the CAP. The 2010 CAP serves to:

- Update the Bay Area 2005 Ozone Strategy in accordance with the requirements of the California Clean Air Act to implement “all feasible measures” to reduce ozone;
- Provide a control strategy to reduce ozone, particulate matter (PM), air toxics, and greenhouse gases in a single, integrated plan;
- Review progress in improving air quality in recent years; and
- Establish emission control measures to be adopted or implemented in the 2010-2012 timeframe.

The CAP is based on population and employment assumptions from the Association of Bay Area Governments (ABAG) Projections 2007. BAAQMD also employs vehicle use trends, made by the Metropolitan Transportation Commission, to formulate future air pollutant emission inventories. The consistency of the proposed project with the CAP primarily depends on its consistency with these assumptions. Population growth beyond what is accounted for in the CAP may result in regional air quality impacts from the increased vehicle miles traveled (VMT) and other emission sources.

4.3.1.3 Sensitive Receptors

The Bay Area Air Quality Management District (BAAQMD) defines sensitive receptors as facilities where sensitive receptor population groups (children, the elderly, the acutely ill and the chronically ill) are likely to be located. These land uses include residences, schools, playgrounds, child-care centers, retirement homes, convalescent homes, hospitals, and medical clinics. Sensitive receptors in the project area include the residential uses directly north of the campus.

4.3.2 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>AIR QUALITY</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>1,4</td>
</tr>
<tr>
<td>2) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>1,4</td>
</tr>
<tr>
<td>AIR QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potentially Significant Impact</td>
<td>Less Than Significant With Mitigation Incorporated</td>
<td>Less Than Significant Impact</td>
<td>No Impact</td>
<td>Beneficial Impact</td>
<td>Information Source(s)</td>
</tr>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is classified as non-attainment under an applicable federal or state ambient air quality standard including releasing emissions which exceed quantitative thresholds for ozone precursors?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1,4</td>
</tr>
<tr>
<td>4) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1,4</td>
</tr>
<tr>
<td>5) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
</tbody>
</table>

4.3.2.1 CEQA Thresholds Used in the Analysis

As discussed in CEQA Guidelines Section 15064(b), the determination of whether a project may have a significant effect on the environment calls for careful judgment on the part of the lead agency and must be based to the extent possible on scientific and factual data. The County of Santa Clara, and other jurisdictions in the San Francisco Bay Area Air Basin, often utilize the thresholds and methodology for assessing air emissions and/or health effects developed by the BAAQMD based upon the scientific and other factual data prepared by BAAQMD in developing those thresholds.

In December 2010, the California Building Industry Association (BIA) filed a lawsuit in Alameda County Superior Court challenging toxic air contaminants and PM$_{2.5}$ thresholds adopted by BAAQMD in its 2010 CEQA Air Quality Guidelines (California Building Industry Association v. Bay Area Air Quality Management District, Alameda County Superior Court Case No. RG10548693). One of the identified concerns is inhibiting infill and smart growth in the urbanized Bay Area. On March 5, 2012, the Superior Court found that the adoption of thresholds by the BAAQMD in its CEQA Air Quality Guidelines is a CEQA project and BAAQMD is not to disseminate officially sanctioned air quality thresholds of significance until BAAQMD fully complies with CEQA. No further findings or rulings on the thresholds in the BAAQMD CEQA Air Quality Guidelines were made.

The Gavilan Joint Community College District understands the effect of the lawsuit to be that BAAQMD may eventually prepare an environmental review document before BAAQMD adopts the same or revised thresholds. However, the ruling in the case does not equate to a finding that the quantitative metrics in the BAAQMD thresholds are incorrect or unreliable for meeting goals in the Bay Area 2010 Clean Air Plan. Moreover, as noted above, the determination of whether a project may have a significant effect on the environment is subject to the discretion of each lead agency, based upon substantial evidence. Notwithstanding the BIA lawsuit, which has no binding or preclusive effect on the Gavilan Joint Community College District’s discretion to decide on the
appropriate thresholds to use for determining the significance of air quality impacts, the District has carefully considered the thresholds previously prepared by BAAQMD and regards the thresholds listed below to be based on the best information available for the San Francisco Bay Area Air Basin and conservative in terms of the assessment of health effects associated with TACs and PM$_{2.5}$. Evidence supporting these thresholds has been presented in the following documents:

- BAAQMD. *Thresholds Options and Justification Report*. 2009.
- BAAQMD. *CEQA Air Quality Guidelines*. May 2011. (Appendix D)

The analysis in this Initial Study is based upon the general methodologies in the most recent BAAQMD CEQA Air Quality Guidelines (dated May 2012) and numeric thresholds for the San Francisco Bay Basin, including the thresholds listed in Table 4.3-2.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction</th>
<th>Operation-Related</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Daily Emissions (pounds/day)</td>
<td>Average Daily Emissions (pounds/day)</td>
</tr>
<tr>
<td>ROG, NO$_x$</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>82 (exhaust)</td>
<td>82</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>54 (exhaust)</td>
<td>54</td>
</tr>
<tr>
<td>Fugitive Dust (PM${10}$/PM${2.5}$)</td>
<td>Best Management Practices</td>
<td>None</td>
</tr>
<tr>
<td>Risk and Hazards for New Sources and Receptors (Project)</td>
<td>Same as Operational Threshold</td>
<td>• Increased cancer risk of >10.0 in one million
• Increased non-cancer risk of > 1.0 Hazard Index (chronic or acute)
• Ambient PM$_{2.5}$ increase: > 0.3 µ/m3
 [Zone of influence: 1,000-foot radius from property line of source or receptor]</td>
</tr>
<tr>
<td>Risk and Hazards for New Sources and Receptors (Cumulative)</td>
<td>Same as Operational Threshold</td>
<td>• Increased cancer risk of >100 in one million
• Increased non-cancer risk of > 10.0 Hazard Index (chronic or acute)
• Ambient PM$_{2.5}$ increase: > 0.8 µ/m3
 [Zone of influence: 1,000-foot radius from property line of source or receptor]</td>
</tr>
</tbody>
</table>

Sources: BAAQMD *Thresholds Options and Justification Report* (2009) and BAAQMD *CEQA Air Quality Guidelines* (dated May 2011).
4.3.2.2 Regional and Local Impacts

Operational and area source emissions typically represent the majority of a project’s air quality impacts. After a project is built, operational emissions including mobile and area sources are anticipated to occur continuously throughout the project’s lifetime. Operational emissions refer to emissions resulting from vehicle trips to and from the site. Area sources generally include fuel combustion from space and water heating, landscape maintenance equipment, fireplaces/stoves, evaporative emissions from architectural coatings, consumer products and unpermitted emissions from stationary sources.

The project proposes to implement several physical improvements to the existing Gavilan campus (refer to Section 3.0, Project Description). While the improvements would alter the use of facilities within the campus, none would increase the student capacity of the overall campus, meaning no new daily vehicle trips would result from the project. The project, therefore, would not result in ongoing operational emissions associated with vehicle trips.

The proposed outdoor classrooms would not be heated, but may utilize small amounts of electricity for lighting. Additionally, although the proposed water distribution system improvements would replace an existing system, the improved distribution may result in a slight increase in electricity use related to the increased pumping of water. Indirect air emissions from these potential increases in electricity use would be negligible. The project would not increase the square footage of buildings on the site that require heating, and thus would not increase the use of natural gas and the air emissions that would result.

4.3.2.2 Construction-Related Impacts

Construction activities would temporarily affect local air quality. Construction activities such as earthmoving, construction vehicle traffic, and wind blowing over exposed earth would generate exhaust emissions and fugitive particulate matter emissions that affect local and regional air quality. Construction activities are also a source of organic gas emissions. Solvents in adhesives, non-water based paints, thinners, some insulating materials, and caulking materials would evaporate into the atmosphere and would participate in the photochemical reaction that creates urban ozone. Asphalt used in paving is also a source of organic gases for a short time after its application.

BAAQMD developed screening criteria for construction emissions to determine the size at which a project may result in average emissions of 54 pounds per day of ROG, NOx, PM$_{2.5}$, and 82 pounds per day of PM$_{10}$ during construction activities. The screening criteria were derived using the default assumptions in the Urban Land Use Emissions Model (URBEMIS) for various land use projects. The BAAQMD screening criteria were designed for the same emissions levels that are used in this Initial Study for criteria pollutant impacts from construction; therefore, a project below the screening criteria developed by BAAQMD would not result in significant construction emissions. The screening level for universities and junior colleges is 277,000 square feet of development, or an increase of 3,012 students. The physical development proposed by the project would be far less than 277,000 square feet, and no increase in student capacity is proposed. The project, therefore, would not result in significant criteria pollutant emissions.
Construction activities also result in the release of dust, which could impact nearby sensitive receptors. For all proposed projects, BAAQMD recommends the implementation of Basic Construction Mitigation Measures, whether or not construction-related emissions exceed applicable thresholds of significance. Although the proposed project would not result in significant dust impacts, the project will include the following measures, listed as avoidance measures for the purposes of this Initial Study, recommended by BAAQMD to further reduce project construction dust impacts to a less than significant level:

Avoidance Measures:

AM AQ-1.1: The following avoidance measures shall be implemented during all phases of construction per BAAQMD’s Basic Construction Mitigation Measures to prevent visible dust emissions from leaving the project site:

- Water all active construction areas at least twice daily or as often as needed to control dust emissions.
- Cover all trucks hauling soil, sand, and other loose materials and/or ensure that all trucks hauling such materials maintain at least two feet of freeboard.
- Pave, apply water twice daily, or as often as necessary, to control dust, or apply non-toxic soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites.
- Sweep daily, or as often as needed, with water sweepers all paved access roads, parking areas and staging areas at construction sites to control dust.
- Sweep adjacent public streets daily, or as often as needed, to keep streets free of visible soil material.
- Hydroseed or apply non-toxic soil stabilizers to inactive construction areas.
- Enclose, cover, water twice daily or apply non-toxic soil binders to exposed stockpiles (dirt, sand, etc.).
- Limit vehicle traffic speeds on unpaved roads to 15 mph.
- Replant vegetation in disturbed areas as quickly as possible.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.

4.3.2.3 Odor Impacts

The proposed project would not introduce a new land use on the site that would create objectionable odors.

4.3.3 Conclusion

The project will not result in significant air quality impacts. Implementation of the proposed avoidance measures will further reduce air quality impacts associated with the construction of the proposed project. [Less Than Significant Impact]
4.4 BIOLOGICAL RESOURCES

The following discussion is based on a Biological Resources Report completed by Live Oak Associates, Inc. in July 2012. This report is included as Appendix A to this Initial Study.

4.4.1 Existing Setting

The project site consists of a college campus and associated landscaping. Surrounding land uses include single-family residences to the north, agricultural fields to the east, and mixed oak woodlands and rangelands that are currently grazed to the south and west. A seasonal drainage, Gavilan Creek, which is a tributary of Uvas Creek and is highly altered with man-made ponds and waterfalls, traverses the campus, flowing onto the site to the southwest of Parking Lot E and generally flowing easterly across the campus. Habitats and land uses identified onsite include mixed oak woodland, ruderal/non-native grassland, developed/landscaped, and riparian habitat (including seasonal drainage, aquatic, and riparian woodland). These habitats are described in greater detail below, and their locations are shown on Figure 13.

4.4.1.1 Biotic Habitats

Ruderal/Non-Native Grassland

Vegetation. The most abundant habitat on the site consists of ruderal/non-native grasslands dominated by grasses and forbs of Mediterranean origin. This habitat occurs along portions of the proposed water distribution line alignment that will deliver water from wells located in the agricultural fields east of the site to the two proposed water tanks located west of the site. Although the water line will primarily be constructed within the already developed/landscaped areas of the campus and within paved roadways off-site (Mesa Road), the line will traverse non-native grasslands between the western edge of the campus, in the vicinity of Parking Lot E, and the water tanks.

Ruderal/non-native grasslands observed within the footprint of the pipe alignment were heavily dominated by non-native annual grasses including soft chess, ripgut brome, slender wild oats, and Italian ryegrass. In addition to the non-native grasses, many non-native annual forbs were observed in this habitat including yellow star thistle, redstem filaree, Carolina geranium, burclover, hedge parsley, and black mustard. Several native forbs would be expected to occur in this habitat, including, but not limited to, California poppy, soap plant, California buttercup, and yarrow. The only native grass observed in this habitat during a site visit in January 2012 was purple needlegrass.

Ruderal/non-native grassland habitats are also located in the southernmost portion of the site in the area of the proposed Parking Lot C expansion. This area includes both a ruderal field and areas that have been characterized as “upland swales” associated with and located downstream of the small drainage channel below the Gavilan duck pond. The ruderal field is dominated by the same non-native grasses and forbs described for the pipe alignment area. The upland swale areas also are dominated by similar non-native species, but additional non-native forbs encountered in these latter areas included curly dock, cheeseweed, English plantain, pepperweed, milk thistle, and rose clover. Between the northern bank of the small drainage channel and the existing edge of the parking lot, a small strip of this habitat also supports native and non-native trees and shrubs which appear to have been planted (many of the trees were staked) and which will be removed as a result of the project. These trees and shrubs include coast live oak, black oak, Peruvian pepper, toyon, and coyote brush.
Wildlife. Although no reptiles were observed in this habitat, western fence lizard, alligator lizard, California kingsnake, Pacific gopher snake, terrestrial garter snake, and western rattlesnake are likely to occur in this habitat onsite.

Avian species observed in this habitat during the January 2012 site visit include the red-shouldered hawk, northern flicker, black phoebe, northern mockingbird, Brewer’s blackbird, and California towhee. Other birds that may occur in this habitat include the white-tailed kite, red-tailed hawk, and Anna’s hummingbird.

Mammals observed in this habitat include the black-tailed jackrabbit, California ground squirrel, Botta’s pocket gopher, domestic dog, and domestic cattle on the hill containing the water tank. The meadow vole and American badger may also occur in this habitat.

In addition, the killdeer and Pacific treefrog were observed in the agricultural fields bordering the proposed waterline along Mesa Road east of the campus.

Riparian/Aquatic

A seasonal drainage, Gavilan Creek, which is a tributary of Uvas Creek, flows generally west to east across the Gavilan College Campus. Within the campus, it appears that the drainage has been modified to a large degree for aesthetic purposes with small created ponds that support very little vegetation, small waterfalls, and large boulders. A large stock pond is associated with the drainage just off-site (known as the cow pond) and is located to the west of the campus, southeast of the water tank site. Several other ponds are associated with the channel within the campus boundaries, including the duck pond (man-made detention basin) that occurs just west of the area of the Parking Lot C expansion and a pond just south of Parking Lot E. The drainage itself was almost dry during the January 2012 site visit; however, associated ponds were inundated.

Vegetation. Mature native riparian vegetation is associated with the drainage channel upstream of the duck pond, including live oaks, valley oaks, black oaks, coyote brush, toyon, and coffeeberry. The pond near Parking Lot E was densely vegetated with wetland species including cattails, hairy willow-herb, tall flat sedge, and rabbit-foot grass.

Downstream of the duck pond dam, the drainage varies from approximately three to four feet in width, fed only by a 12-inch pipe that drains overflow from the duck pond. This part of the drainage supports very little riparian tree canopy and is dominated by herbaceous wetland species including tall flat sedge and curly dock. The narrow channel is surrounded by ruderal/non-native grassland habitat that likely encroaches on the channel during drier times of the year. The drainage flows through a man-made swale which supports primarily ruderal upland vegetation along the east side of Parking Lot C before eventually flowing under Santa Teresa Boulevard via a culvert and draining into another creek on the east side of the road.

A second seasonal drainage, also a tributary to Uvas Creek, occurs just off-site along the northern boundary of the campus. This drainage was completely dry during the January 2012 site visit. Very little herbaceous vegetation, and no hydrophytic (wetland) vegetation was observed within the channel. The drainage did support a riparian tree canopy comprised of trees similar to those of the riparian woodland of the onsite drainage.
The water pipeline alignment proposed to be constructed within Mesa Road from the eastern boundary of the campus to the wells located offsite to the east will traverse a creek (Uvas Creek tributary) that flows generally in a northerly direction just to the east of Santa Teresa Boulevard. The creek on the south side of the road crossing supports riparian trees including willows, California black walnut, and valley oak. Herbaceous vegetation observed in the creek near the Mesa Road crossing included mugwort, canary grass, and dense stands of poison hemlock. On the north side of the Mesa Road crossing, the creek flows within a ditch along an agricultural field and supports no riparian vegetation. Eventually, this creek is piped underground and ultimately flows into Uvas Creek to the northeast.

Wildlife. Because of the diversity of vegetation layers in riparian systems, generally these habitats support an array of native wildlife and provide movement corridors for some animal species between other habitat types. For this reason, riparian habitats tend to provide high biotic value. However, while moderate to high quality riparian systems typically support a diverse wildlife component, Gavilan Creek is surrounded by developed areas and is culverted at multiple locations. The majority of the riparian corridor lacks the dense understory which many riparian species depend on. Additionally, intense land use in the form of an active community college exists adjacent to the creek. This reach is likely to support common species that are attracted to urban creek systems, and some wildlife species such as birds, raccoons, deer, and special-status species such as the California tiger salamander and the California red-legged frog may move along this riparian zone, movements by other species would be somewhat constricted due to the condition of the riparian habitat, narrowness of the existing riparian corridor, the high density of adjacent development, and the relatively short length of this existing reach. The seasonal drainage adjacent to the north end of campus near the Police Academy portable buildings to be removed supports a wider drainage; however, the habitat around the drainage is consistent with the adjacent oak woodland habitat.

Although no amphibians or reptiles were observed during the January 2012 site visit, the Western toad, bullfrog, Pacific treefrog, red-eared slider, California kingsnake, gopher snake, and terrestrial garter snake are expected to occur in this habitat.

Avian species observed in this habitat include the mallard, domestic ducks, American coot, Anna’s hummingbird, black phoebe, western scrub jay, and Bewick’s Wren. Other birds that may occur onsite include the ruby-crowned kinglet, yellow-rumped warbler, spotted towhee, and California towhee.

Mammal signs observed in this habitat include those of the California ground squirrel and Botta’s pocket gopher. Additional mammals may include the meadow vole, raccoon and striped skunk.

Mixed Oak Woodland

Vegetation. In the vicinity of the water tank site, habitat consists of mixed oak woodland with a non-native grassland understory similar to that described south of the tank site for the water pipeline alignment. This habitat is primarily dominated by blue oaks, but also supports black oaks and valley oaks. For the most part, a shrub understory is absent from this habitat; however, a few shrubs, including poison oak and sagebrush, were observed here.
Wildlife. Although no amphibians or reptiles were observed in this habitat during the January 2012 site visit, amphibians and reptiles that may occur in this habitat include the California newt, yellow-eyed ensatina, arboreal salamander, California slender salamander, Western fence lizard, Pacific gopher snake, and terrestrial garter snake.

Avian species observed in this habitat include the American kestrel, California quail, Anna’s hummingbird, acorn woodpecker, northern flicker, and black phoebe. Additional birds that may occur in this habitat onsite include the red-shouldered hawk, red-tailed hawk, Cooper’s hawk, Stellar’s jay, western scrub jay, American crow, chestnut-backed chickadee, spotted towhee, California towhee, and dark-eyed junco.

Mammals observed in this habitat include the California ground squirrel and sign of the San Francisco dusky-footed woodrat. The western gray squirrel, eastern fox squirrel, and black-tailed deer are also likely to occur in this habitat type.

Developed/Landsaped

All other areas of the project site consist of the college buildings, parking lots, roadways, athletic fields and their surrounding landscaped areas.

Wildlife. Although no amphibians or reptiles were observed in the developed habitat during the January 2012 site visit, species in the surrounding habitats are likely to occur in this habitat as well. Avian species observed in this habitat include the Anna’s hummingbird, western scrub jay, American crow, ruby-crowned kinglet, American Robin, and California towhee. Other birds likely to occur in this habitat include the red-tailed hawk and Stellar’s jay.

Mammals observed in this habitat include the Botta’s pocket gopher and eastern fox squirrel. The domestic dog, raccoon, striped skunk, and domestic cat are also likely to occur in this habitat.

4.4.1.2 Movement Corridors

Wildlife movement corridors are areas where regional wildlife populations regularly and predictably move during dispersal or migration. Movement corridors in California are typically associated with valleys, rivers and creeks supporting riparian vegetation, and ridgelines. With increasing encroachment of humans on wildlife habitats, it has become important to establish and maintain linkages, or movement corridors, for animals to be able to access locations containing different biotic resources that are essential to maintaining their life cycles.

The importance of an area as a movement corridor depends on the species in question and its consistent use patterns. Animal movements generally can be divided into three major behavioral categories:

- Movements within a home range or territory;
- Movements during migration; and
- Movements during dispersal.
While no detailed study of animal movements has been conducted for the project area, knowledge of the site, its habitats, and the ecology of the species potentially occurring onsite allows for sufficient predictions about the types of movements occurring in the region and whether or not proposed development would constitute a significant impact to animal movements.

As noted above, a number of reptiles, birds, and mammals may use the site as part of their home range and dispersal movements. Creeks and drainages are known to facilitate wildlife movement, and the short on-site drainage (Gavilan Creek) appears to begin at an off-site stock pond, empties into the duck pond, continues through a small area of riparian habitat, through a man-made swale and a culvert under Santa Teresa Boulevard, and ultimately drains into another creek on the east side of the road. This drainage could support wildlife movement between the hills to the west of campus, the campus itself, and the off-site creek on the east side of Santa Teresa Boulevard, including movement of special-status species (California tiger salamander and red-legged frog).

4.4.2 Regulatory Framework

The project area is not covered by any adopted Habitat Conservation Plan (HCP), Natural Community Conservation Plan (NCCP), or other approved local, regional, or state habitat conservation plan.

4.4.2.1 Special-Status Species

“Special-status species” refers to plants and animals listed, proposed for listing, or candidates for listing as threatened or endangered under the Federal Endangered Species Act (FESA) or the California Endangered Species Act (CESA); animals listed as “fully protected” under the California Fish and Game Code; animals designated as “Species of Special Concern” by the California Department of Fish and Game (CDFG); and plants listed as rare or endangered by the California Native Plant Society (CNPS).

The discussion below summarizes the special-status species known to occur in the region and their potential for occurrence within the project impact area (refer to Appendix A of this Initial Study for a detailed list and discussion).

Special-Status Plant Species

Several special-status plant species are known to occur in the project vicinity (a list of these species is included in Appendix A). Many of these species are associated with specific habitats or soil types that do not occur within the project impact area, or occur at elevations outside of the range of elevations on the site. None of these species were observed during the reconnaissance-level surveys. Therefore, it was determined that special-status plant species are absent from all areas of the site that would be directly impacted by project construction. They may occur in natural habitat areas that were not surveyed, and therefore, could be indirectly impacted by the proposed project. The most likely special-status plants to occur on the project site are round-leaved filaree and Congdon’s tarplant.
Special-Status Wildlife Species

A number of special-status wildlife species occur in the project vicinity. Many of these are not expected to occur in the project area due to current distribution limits or lack of suitable habitat. Other special-status species may use the project area as transients or migrants, or may occur in very low numbers, but are not expected to breed at the site or to be present in any numbers, and thus would not be impacted significantly by project activities.

Two special-status species are known or expected to occur within the project area and to breed in the project vicinity. These species merit further discussion and are described in detail below.

California Tiger Salamander (Federal and State Listing Status: Threatened). Species-specific surveys have not been conducted for California Tiger Salamander (CTS) within the project area; however, Live Oak Associates, Inc. assessed the site for CTS habitat on February 20, 2012 and found that, although not surveyed, a stock pond located just off the site near the water tank (known as the cow pond) may support suitable breeding habitat, as the hydrology of the pond is presumed to be adequate and no fish or bullfrogs are presumed to reside in the pond. Onsite, CTS are unlikely to breed in the duck pond due to the presence of mosquito fish and possible presence of bullfrogs. Red-eared sliders were also present in the pond; it is unknown whether or not they would have an adverse impact on CTS. CTS may use the seasonal drainage and associated man-made ponds as a movement corridor should they occur in the off-site pond.

The area of expansion for Parking Lot C is unlikely to support estivating CTS due to the fact that the field appears to be highly disturbed, has limited burrows, and the surrounding development may create a barrier between suitable estivation habitat and that area of the site; however, CTS may estivate under the portable buildings on the northern edge of the site. Other areas on the site could reasonably support estivation habitat for CTS, including near the water tank adjacent to the off-site pond, and CTS may use the seasonal creek and associated man-made ponds as a movement corridor through the site.

While estivation habitat for CTS is feasible within the site, breeding habitat is not. The surrounding lands support potentially suitable estivation and breeding habitat for CTS. Several CTS locations have been reported within three miles of the site, with the closest being approximately one-half mile to the north of the site, and there is a reasonable potential that CTS could occur onsite.

California Red-Legged Frog (Federal Listing Status: Threatened; State Listing Status: Species of Special Concern). Species-specific surveys have not been conducted for the California Red-Legged Frog (CRLF) within the project area. Suitable breeding habitat for this species in the form of adequate stock ponds is absent from the site. Live Oak Associates, Inc. assessed the site for CRLF habitat on February 20, 2012 and found that the stock pond described above (known as the cow pond) may support suitable breeding habitat, as the hydrology of the pond is presumed to be adequate and no fish or bullfrogs are presumed to reside in the off-site pond. CRLF are unlikely to breed in the duck pond due to the presence of mosquito fish and possible presence of bullfrogs. Non-native red-eared slider turtles were also present in the pond; it is unknown whether or not they would have an adverse impact on CRLF. CRLF may use the seasonal drainage and associated man-made ponds

4 Estivation is a state of dormancy some animal species enter during hot, dry summer months.
as a movement corridor should they occur in the off-site pond. Several CRLF locations have been reported within three miles of the site with the closest being approximately one and a half mile to the south of the site, and there is a reasonable potential that CRLF could occur onsite.

Migratory Bird Treaty Act and California Fish and Game Code

The federal Migratory Bird Treaty Act (MBTA) prohibits killing, possessing, or trading in migratory birds except in accordance with regulations prescribed by the Secretary of the Interior. This act encompasses whole birds, parts of birds, and bird nests and eggs. Birds of prey are also protected in California under the California Fish and Game Code. Section 3503.5 states it is “unlawful to take, possess, or destroy any birds in the order Falconiformes or Strigiformes (birds of prey) or to take, possess, or destroy the nest or eggs of any such bird except as otherwise provided by this Code or any regulation adopted pursuant thereto.” Construction disturbance during the breeding season could result in the incidental loss of fertile eggs or nestlings, or otherwise lead to nest abandonment. Disturbance that causes nest abandonment and/or loss of reproductive effort is considered “take” by the CDFG.

Federal Endangered Species Act

Section 7 of the FESA is the mechanism by which federal agencies ensure the actions they take, including those they fund or authorize, do not jeopardize the existence of any listed species. When any action the agency carries out, funds, or authorizes (such as through a permit) may affect a federally listed endangered or threatened species, the agency must consult with the U.S. Fish and Wildlife Service (USFWS). This process usually begins as informal consultation. If it is determined that the proposed action is not likely to affect any listed species in the project area, and if the Service concurs, the informal consultation is complete. If it appears that the agency’s action may affect a listed species, that agency may then prepare a biological assessment to assist in its determination of the project’s effect on a species and to request formal consultation with the USFWS.5

4.4.2.2 **Jurisdictional Waters**

Jurisdictional waters include rivers, creeks, and drainages that have a defined bed and bank and which, at the very least, carry ephemeral flows. Jurisdictional waters also include lakes, ponds, reservoirs, and wetlands. Such waters may be subject to the regulatory authority of the U.S. Army Corps of Engineers (USACE), the CDFG, and the California Regional Water Quality Control Board (RWQCB). Aquatic features are typically only considered to be jurisdictional by USACE if they connect to other Waters of the United States.

Both the onsite portion of Gavilan Creek, with its associated ponds, and the off-site tributary to Uvas Creek that the water pipe alignment will cross along Mesa Road would likely be considered Waters of the United States and the State of California, falling under the jurisdiction of the USACE, CDFG, and RWQCB. In the absence of adjacent wetlands, the extent of USACE and RWQCB jurisdiction over these features would be the Ordinary High Water Mark (OHWM) on opposing banks, while the limit of CDFG jurisdiction would be the top of the bank or the dripline of riparian vegetation, whichever is greater.

http://www.fws.gov/midwest/endangered/section7/section7.html
Currently there is no adopted Habitat Conservation Plan that covers the project area. Six local partners (the County of Santa Clara, Santa Clara Valley Transportation Authority, Santa Clara Valley Water District, and the Cities of San Jose, Gilroy and Morgan Hill) and two wildlife agencies (CDFG and USFWS) are in the process of designing a multi-species habitat conservation plan. The study area of the Santa Clara Valley Habitat Conservation Plan/Natural Communities Conservation Plan (HCP/NCCP) primarily covers southern Santa Clara County as well as the City of San Jose with the exception of the bayland areas. The HCP addresses listed species and species that are likely to become listed during the plan's 50-year permit term. The covered species include, but are not limited to, western burrowing owl, California tiger salamander, and California red-legged frog. The HCP requires that the agencies comment on reportable interim projects and recommend mitigation measures or project alternatives that would help achieve the preliminary conservation objectives and not preclude important conservation planning options or connectivity between areas of high habitat value. Fees paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for these species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-construction species surveys and seasonal restrictions on construction activities) to directly protect species. Several “no take” species also exist that, because of their rarity or regulatory status (e.g., state fully protected species), cannot be “taken” by a project that is covered by the plan.

The HCP/NCCP process is anticipated to be completed in late 2012 or early 2013. While the project is not considered a “covered activity” in the HCP/NCCP, the Gavilan Joint Community College District could participate in the HCP/NCCP mitigation program as a “participating special entity.”

4.4.2.4 Tree Ordinance

The Santa Clara County Municipal Code includes a tree ordinance that requires permits for the removal of “protected trees.” Protected trees in the context of the proposed project include trees measuring 12 inches in diameter at a height of 4.5 feet, and any tree designated as a Heritage Tree by the County Board of Supervisors. Though no heritage trees are located on the campus, protected trees are located throughout the site.
4.4.3 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>BIOLOGICAL RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td>1) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>1,5</td>
</tr>
<tr>
<td>2) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>1,5</td>
</tr>
<tr>
<td>3) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>1,5</td>
</tr>
<tr>
<td>4) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, impede the use of native wildlife nursery sites?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>1,5</td>
</tr>
<tr>
<td>5) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>1,2,5</td>
</tr>
<tr>
<td>6) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>1,5</td>
</tr>
</tbody>
</table>

4.4.3.1 Impacts to Special-Status Animal Species

California Tiger Salamander

Potentially suitable estivation habitat for California tiger salamander (CTS) is present within the study area in the form of the grassland habitat near the water tank and under the portable buildings on
the northern edge of the site. Additionally, a potential movement corridor habitat exists between the off-site pond (cow pond) through the seasonal drainage and associated man-made pools that runs eastward across the site. Potential impacts to CTS from each element of the project are presented in Table 4.4-1. The project, as proposed, will not impact any breeding habitat. However, impacts to estivation habitat and/or estivating CTS would be considered a significant impact.

Most of the impacts to CTS estivation habitat will be temporary, resulting from trenching for the new water pipeline that spans from the water tank site west of campus to the developed environs of the campus near Parking Lot E through non-native grassland habitat. An additional temporary loss of potential estivation habitat will occur as a result of the replacement of the former Police Academy portable buildings in the northwest corner of the campus (approximately 1,650 feet northeast of the breeding pond), should CTS estivate underneath these structures. Minor temporary impacts could result from the construction of signs at the Meadow Restoration and Seasonal Wetland demonstration areas (located 100 feet and 850 feet, respectively, from the breeding pond). The extent of the temporary impacts associated with the new water pipeline, signs, and portable building replacement are estimated at less than one acre. There could be minor permanent impacts to CTS estivation habitat resulting from construction of the new water tanks (located approximately 400 feet north of the breeding pond), the proposed Native Plant Propogation outdoor classroom (approximately 1,600 feet to the north of the breeding pond), and the Wetlands Overlook outdoor classroom (located approximately 600 feet southeast of the breeding pond). Permanent impacts to estivation habitat as a result of these latter project elements are estimated at less than 0.75 acres. Additionally, the expansion of Parking Lot C and construction of the Pond Life and Riparian Habitat outdoor classrooms will result in minor permanent impacts to areas near Gavilan Creek which may provide marginal CTS movement habitat. Impacts to potential movement corridors for CTS are estimated at less than 0.05 acres.

Impact BIO-1: The project could result in significant impacts to California tiger salamanders.

California Red-Legged Frog

Potentially suitable upland habitat for the California red-legged frog (CRLF) is present within the study area in the form of the grassland habitat near the water tank. Potential movement corridor habitat exists between the off-site pond through the seasonal drainage and associated pools that runs east across the site. Potential impacts to CRLF from each element of the project are presented in Table 4.4-1. The project, as proposed, will not impact any breeding habitat. However, impacts to upland habitat would be considered a significant impact to CRLF habitat and/or individuals.

With the exception of the replacement of the portable buildings in the northwest corner of the campus, project elements that will result in temporary and permanent impacts to CTS estivation and corridor habitat would also impact potential upland movement and foraging habitat for CRLF, should CRLF breed in the stock pond immediately to the west of the campus. Temporary impacts to CRLF upland habitat are estimated at less than one acre, and permanent impacts to such habitat are also estimated at less than one acre.

Impact BIO-2: The project could result in significant impacts to California red-legged frogs.

Gilroy Campus Modernization Project

Gavilan Joint Community College District

Initial Study

September 2012
Western Pond Turtles

The proposed project would result in the loss of a small area of upland habitat that is of very low quality for western pond turtles (WPT), and would not result in a loss of breeding habitat. Rearing habitat exists on the site in the form of several man-made ponds, and WPT potentially occur in the off-site pond near the water tank; however, red-eared sliders were observed in the duck pond, and they are known to impact the western pond turtle. Therefore, impacts to WPT habitat would be considered minimal. Potential impacts to WPT from each element of the project are presented in Table 4.4-1. It is possible, albeit highly unlikely, that WPT would move into the construction zone, which may result in mortality to individual western pond turtles. The loss of these individuals would constitute a significant impact.

Impact BIO-3: The project could result in significant impacts to western pond turtles. [Significant Impact]

Burrowing Owls

The Parking Lot C extension, water tank construction, and water distribution line work near the water tank would result in the conversion of ruderal grassland habitat into habitat unsuitable for this species. Potential impacts to burrowing owls from each element of the project are presented in Table 4.4-1. Suitable nest burrows were largely absent from the site, and neither individuals nor evidence of this species’ presence were detected during the January 2012 survey. However, two locations of ruderal grassland habitat, south of Parking Lot C and the hill below the water tank, support California ground squirrels, which provide suitable burrows for burrowing owls. The harm, injury or mortality of individuals from site development would be considered significant. Should site grading occur during the nesting season for this species (February 1 through August 31), nests and nestlings that may be present would likely be destroyed. Resident owls may also be buried in their nest burrows outside of the nesting season (September 1 through January 31). Any actions related to site development that result in the mortality of burrowing owls would constitute a violation of the federal Migratory Bird Treaty Act and provisions of the California Fish and Game Code. Therefore, the mortality of burrowing owls would constitute a significant impact.

Impact BIO-4: The project could result in significant impacts to burrowing owls. [Significant Impact]
<table>
<thead>
<tr>
<th>Species or Resource</th>
<th>GECA Campus Consolidation</th>
<th>Building CJ500 Demolition</th>
<th>Portables Demolition</th>
<th>Parking Lot C Expansion</th>
<th>Water Storage Tank Distribution and Well Improvements</th>
<th>Native Plant Propagation outdoor classroom</th>
<th>Wetlands Overlook, Pond Life Overlook, and Riparian Habitat outdoor classrooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-tailed Kite and Non-listed Raptors</td>
<td>Disturbance to nests during construction.</td>
<td>Disturbance to nests during construction.</td>
<td>Disturbance to nests during construction.</td>
<td>Loss of forage habitat, disturbance to nests during construction.</td>
<td>Temporary loss of forage habitat, disturbance to nests during construction.</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Burrowing Owl</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>Loss of potential habitat and loss of individuals, if present during construction.</td>
<td>Loss of potential habitat and loss of individuals, if present during construction.</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>California Tiger Salamander</td>
<td>Loss of travel habitat.</td>
<td>No impacts.</td>
<td>Temporary loss of estivation habitat during construction, loss of individuals, if present during construction.</td>
<td>Loss of travel habitat.</td>
<td>Permanent loss of estivation habitat during construction of the water tank, and temporary loss of estivation habitat during construction of the water pipes, loss of individuals, if present during construction.</td>
<td>Loss of estivation habitat, loss of individuals, if present during construction.</td>
<td>Temporary loss of use of corridor during construction.</td>
</tr>
<tr>
<td>Species or Resource</td>
<td>GECA Campus Consolidation</td>
<td>Building CJ500 Demolition</td>
<td>Portables Demolition</td>
<td>Parking Lot C Expansion</td>
<td>Water Storage Tank Distribution and Well Improvements</td>
<td>Native Plant Propagation outdoor classroom</td>
<td>Wetlands Overlook, Pond Life Overlook, and Riparian Habitat outdoor classrooms</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>San Francisco Dusky-Footed Woodrat</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>Disturbance to woodrat nests during construction, loss of habitat, loss of individuals, if present during construction,</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>American Badger</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>Temporary loss of foraging habitat during construction, loss of individuals, if present during construction.</td>
<td>Temporary loss of foraging habitat during construction, loss of individuals, if present during construction.</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Species or Resource</td>
<td>GECA Campus Consolidation</td>
<td>Building CJ500 Demolition</td>
<td>Portables Demolition</td>
<td>Parking Lot C Expansion</td>
<td>Water Storage Tank Distribution and Well Improvements</td>
<td>Native Plant Propagation outdoor classroom</td>
<td>Wetlands Overlook, Pond Life Overlook, and Riparian Habitat outdoor classrooms</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Round-leaved Filaree and Congdon's Tarplant</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>Loss of individuals, if present.</td>
<td>Temporary loss of habitat, loss of individuals, if present.</td>
<td>Loss of habitat, loss of individuals, if present.</td>
<td>Loss of habitat, loss of individuals, if present.</td>
</tr>
</tbody>
</table>
White-tailed Kite, Golden Eagle, and Nesting Raptors

Although the loss of habitat for white-tailed kite would not be considered significant, impacts to individuals would be considered significant. The trees on the site provide suitable nesting habitat for the white-tailed kite, as well as more common raptor species protected by the California Fish and Game Code. Golden eagles may use the site and surrounding habitat from time to time as foraging habitat only. Potential impacts to these species from each element of the project are presented in Table 4.4-1. Although a full pre-construction nesting raptor survey was not performed, no active stick nests or nests from previous years were observed onsite during the January 2012 site visit. One red-shouldered hawk was observed flying to a tree in the riparian corridor along a tributary of Uvas Creek just to the east of the site. Nonetheless, breeding pairs could choose to nest in the onsite trees or in the nearby trees in future years. Project construction at the time of nesting (February 1 through August 31) could induce the adults to abandon the nest when juveniles are present, thus leading to their starvation. The mortality of juveniles would constitute a significant impact.

Impact BIO-5: The project could result in significant impacts to white-tailed kites, golden eagles, and nesting raptors. [Significant Impact]

San Francisco Dusky-Footed Woodrats

Potential impacts to dusky-footed woodrats from each element of the project are presented in Table 4.4-1. A mound of scat characteristic of San Francisco dusky-footed woodrats was observed at the base of a hollow oak tree trunk northwest of the current water tank location. Development of the water tank is proposed in the vicinity of the nest. If this woodrat nesting area or additional woodrat nests are located within the development footprint or construction staging areas in the future, construction activities could result in harm to individual woodrats while in their nests. This would be considered a significant impact.

Impact BIO-6: The project could result in significant impacts to San Francisco dusky-footed woodrats. [Significant Impact]

American Badgers

Potential impacts to American badgers from each element of the project are presented in Table 4.4-1. Individuals and evidence of this species’ presence were not detected during the January 2012 survey. However, two locations of ruderal grassland habitat, south of Parking Lot C and the hill below the water tank, support California ground squirrels, which provide a prey base for the American badger. The harm, injury or mortality of individuals from site development would be considered significant. Should site grading occur while a badger is inside a den, they may be buried in their den. Any actions related to site development that result in the mortality of badgers would constitute a significant impact.

Impact BIO-7: The project could result in significant impacts to American badgers. [Significant Impact]
4.4.3.2 **Impacts to Special-Status Plant Species**

Of the 34 special-status plant species potentially occurring in the region, 28 are considered absent from the site due to a lack of suitable habitat, such as serpentine or granitic soils or vernal pools, or because they would have been identifiable during the January 2012 site visit and they were not observed. Another four species are considered unlikely to occur on the site because habitat is marginal onsite for these species and/or because the species has not been observed in the region for many decades. The latter four species include showy Rancheria clover, alkali milk-vetch, fragrant fritillary, and Loma Prieta hoita.

Round-leaved Filaree and Congdon’s Tarplant

For the remaining two species, round-leaved filaree and Congdon’s tarplant, potential habitat is present within grassland habitats in the vicinity of the water tank and its associated pipeline alignment, the location of the informational signs for the Meadow Restoration and Seasonal Wetland sites, the location of the Native Plant Propagation classroom, and/or in upland grasslands and swales in the vicinity of the Parking Lot C expansion. Other project elements (i.e. the demolition and replacement of the Police Academy portables, GECA Campus Consolidation and Building CJ500 demolition) will have no impact on special-status plants as these elements will occur within the already developed and landscaped areas of the campus. Potential impacts to round-leaved filaree and Congdon’s tarplant from each element of the project are presented in Table 4.4-1.

Appropriately timed botanical surveys in all potential habitats that may be impacted by the project would need to be conducted to rule out the presence of round-leaved filaree and Congdon’s tarplant on the site. Potential habitat for these species occurs within the grasslands in the footprint of the proposed water line between the campus and the water tank. Three botanical surveys (March, June and late October) conducted within the grassland habitat would be sufficient to confirm the presence/absence of these species on the site. If populations of these species are present, depending on the species and the extent of the impact to the population, the project may result in a significant impact.

Impact BIO-8: The project could result in significant impacts to round-leaved filaree and Congdon’s tarplant. [Significant Impact]

4.4.3.3 **Impacts to Riparian Habitat, Federally Protected Wetlands, and Other Sensitive Natural Communities**

Sensitive natural communities and jurisdictional waters of the U.S. and State that are present within the project development footprint include the on-campus portion of Gavilan Creek and the creek occurring off-campus to the east of Santa Teresa Boulevard (which occurs within the proposed new water pipeline alignment), along with their associated riparian and wetland vegetation.

Riparian habitats are generally considered of high value for wildlife due to the presence of water and multilayered vegetation that provides cover, foraging, nesting, roosting and/or movement habitat for these species. The value of a particular riparian system to native wildlife is then a factor of how much the habitat provides these requirements for them. In the case of Gavilan Creek, the portion of the channel onsite is completely surrounded by development and the channel has been highly...
modified from its natural condition with the artificial creation of pools, waterfall features, and the addition of large boulders. Additionally, very little native riparian vegetation is associated with the channel within the more developed environs of the campus as a result of maintenance and landscaping activities, although native riparian vegetation occurs just upstream of campus. Many areas immediately adjacent to the creek within the campus area are completely barren of an herbaceous understory. Flows within the onsite portion of the channel upstream of the duck pond were observed during the January 2012 site visit to be very low, even given recent rains, and appear to be seasonal. As a result of the combination of low seasonal water flows, lack of significant native riparian vegetation, and closely surrounding campus development, the onsite portion of the channel upstream of the duck pond provides low habitat value for most wildlife.

The portion of Gavilan Creek continuing downstream of the duck pond did not contain water during the January 2012 site visit, except for a small pool beneath the dam, but did have a defined bed and bank, and supported wetland vegetation for approximately two hundred feet until draining into a man-made swale supporting primarily upland ruderal vegetation. As with the upstream portion of the channel, this downstream portion would also provide minimal habitat value for native wildlife.

Most of the project elements occur within upland habitat areas or in areas within the already developed environs of the campus and are expected to have no impact on sensitive riparian habitats or jurisdictional waters. These project elements include the demolition and replacement of the Police Academy portables, the GECA Campus Consolidation, the water tank construction, the demolition of Building CJ500, three out of four of the outdoor classrooms, and both of the outdoor demonstration areas. Although a seasonal wetland occurs onsite near the proposed Seasonal Wetland demonstration area where an educational sign would be placed, this wetland will not be directly or indirectly impacted by the project.

Project elements in the vicinity of riparian habitats include the water distribution pipelines, Riparian Habitat outdoor classroom, and Parking Lot C expansion. The proposed new water pipeline alignment will traverse the on-campus portion of Gavilan Creek in the vicinity of a footbridge upstream from the duck pond, and will also traverse the off-campus creek occurring east of Santa Teresa Boulevard. As the water pipeline is proposed to be constructed within the existing Mesa Road roadway in the latter location, this portion of the alignment is also not expected to result in permanent or temporary impacts to sensitive riparian areas or jurisdictional waters. Should the on-campus portion of the alignment traverse Gavilan Creek via the existing footbridge above-ground or be jacked and bored under the creek outside the dripline of riparian vegetation, this alignment crossing also would not be expected to impact jurisdictional waters. The Riparian Habitat outdoor classroom could result in impacts to trees and riparian areas under the jurisdiction of CDFG and the expansion of Parking Lot C will result in the loss of areas presumed jurisdictional by all, or some combination, of USACE, RWQCB and CDFG. These project elements and their impacts are discussed more fully below.

Riparian Habitat Outdoor Classroom

The Riparian Habitat outdoor classroom is proposed to be constructed adjacent to the portion of Gavilan Creek that flows through the developed environs of the campus. While this classroom will not have any impacts on USACE or RWQCB jurisdiction (i.e. will not impact areas within the Ordinary High Water channel of the creek), the classroom could potentially impact areas under the
jurisdiction of the CDFG if any portion of the classroom is constructed below the top of the bank, and potentially could require the removal of riparian trees or other vegetation associated with the creek.

Parking Lot C Expansion

The narrow channel and upland swale downstream of the duck pond will be permanently impacted by the expansion of Parking Lot C. The flows downstream of the duck pond are proposed to be diverted via a pipe that will be constructed under the parking lot and flow to the man-made swale east of the lot in the vicinity of an existing culvert under Santa Teresa Boulevard.

A formal wetland delineation was completed for this section of the channel in January 2012. Vegetation, soils, and hydrology data were gathered consistent with the USACE protocol by *Live Oak Associates, Inc.* to determine if the drainage and swale below the duck pond meet the criteria for jurisdictional wetlands. While the channel meets the vegetation and hydrology criteria for jurisdictional wetlands, the hydric soil criterion was not met. Although not all three criteria required for the drainage channel to be considered a jurisdictional wetland were met, there was evidence of a defined bed and bank and an Ordinary High Water Mark (OHWM) on opposing banks of the channel; therefore, it is likely that USACE and RWQCB would claim jurisdiction over the channel as a tributary water and require that Clean Water Act Section 404 and Section 401 permits be obtained. The swale area does not meet any of the three criteria for jurisdictional wetlands. Nonetheless, until the wetland delineation is verified by USACE, it is unknown whether jurisdiction will ultimately be claimed over the channel or the upland swale. The extent of potential USACE and RWQCB jurisdiction that would be impacted by the Parking Lot C expansion is estimated at approximately 140 linear feet of channel and less than 0.02 acres. Additionally, CDFG may assert jurisdiction over the portion of the channel that exhibits a defined bed and bank and require a Streambed Alteration Agreement be obtained for project impacts.

The loss of Waters of the U.S. and State and sensitive riparian habitat would be considered a significant impact.

Impact BIO-9: The Riparian Habitat outdoor classroom and Parking Lot C expansion could result in significant impacts to riparian habitat and protected wetlands.

[[Significant Impact]]

4.4.3.4 Impacts to Movement Corridors

Gavilan Creek, which runs through campus connecting the off-site stock pond with Uvas Creek, may support local wildlife movement, but is not expected to be a major movement corridor other than for movement on the campus itself, due to the fact that it is largely man-made and is adjacent to roadways and parking lots. The tributary of Uvas Creek along the northern border of the campus and its riparian habitat, which is considered a movement corridor, will be avoided as a part of this project. Site development will have little effect on home range and dispersal movements of native wildlife moving through the site. Therefore, this project will result in a less than significant effect on regional wildlife movements.
4.4.3.5 Impacts to Trees

The project would remove five mature Valley Oak trees in the vicinity of the existing water tank to accommodate the two proposed water tanks. These trees are considered to be protected under the Santa Clara County tree ordinance. The project proposes to plant 12 oak trees in the vicinity of the new water tanks. Because the project would replace the removed trees at a ratio greater than 2:1, the project would not result in a significant impact related to tree removal.

4.4.4 Mitigation and Avoidance Measures

4.4.4.1 California Tiger Salamander

MM BIO-1.1: To reduce impacts to CTS to a less than significant level, the project will implement the following measures:

- To ensure that project construction activities do not adversely impact CTS, the project will implement the following measures during construction to avoid take of individual CTS.
 - Prior to the start of construction activities, a qualified biologist shall train all construction personnel regarding habitat sensitivity, identification of special-status species, and required practices. The training shall include species description and behavior, the general measures that are being implemented to conserve these species as they relate to the project, the penalties for non-compliance, and the boundaries of the project area. A fact sheet or other supporting materials containing this information will be prepared and distributed. Upon completion of training, employees will sign a form stating that they attended the training and understand all the conservation and protection measures.
 - Pre-construction surveys shall be conducted to ensure that CTS are absent from the construction area. If CTS are present, a qualified biologist possessing all necessary permits shall relocate them.
 - Immediately following the pre-construction surveys, the construction zone shall be cleared, and silt fencing shall be erected and maintained around construction zones to prevent CTS from moving into these areas. The fencing shall be a one-way exclusion fencing that restricts CTS from entering onto the construction areas and allows exit from the construction area by way of an earthen ramp sloped to a low point in the exclusion fencing that has a vertical drop on the external face. The low point shall be no less than six inches in height. This fence shall be monitored biweekly by a qualified biologist from between the beginning of the wet season through the end of pond dry-down. Extensive efforts to salvage individuals, such as scooping and digging out all suitable burrows of the site, is not required as any such individuals would be covered under the take permit.
 - A qualified biologist shall be present to monitor the initial movement of equipment and site grading. The biological monitor will only need to monitor during the rough grading activities. Construction monitoring can cease once the build-out has completely disturbed all suitable habitats (fence monitoring should continue).
biological monitor will have the authority to stop and/or redirect project activities to ensure protection of resources and compliance with all environmental permits and conditions of the project. The biological monitor will complete a daily log summarizing activities and environmental compliance.

- Best management practices for construction activities shall be followed for protection of biological resources such as the CTS. These include but are not limited to maintaining low driving speeds (e.g. 10 mph) on site, covering open trench work at the end of the work day, and collecting site litter on a regular basis.

- The applicant shall identify a suitable mitigation strategy for impacts to potential estivation habitat for the CTS to be approved by the USFWS and CDFG, particularly for removal of the portable buildings on the northern end of campus should CTS be found estivating under these buildings. Suitable mitigation could include obtaining off-site mitigation lands at suitable ratio (a minimum of 1:1 for estivation habitat) that will offset loss of functions and values of habitat for CTS and preserving these lands in perpetuity, or by buying credits at an appropriate mitigation bank. If mitigation credits are not feasible, preservation of lands will require that a Mitigation and Monitoring Plan (MMP) be prepared for the explicit purpose of managing mitigation lands for the species. This plan should be submitted to the agencies for review and approval. At a minimum this plan shall:

 - Identify the location of the restoration efforts for replacing suitable habitats. The replacement ratio for estivation habitats will be at a minimum of a 1:1 ratio;
 - Define the objectives of the habitat mitigation, including a discussion of the suitability of the preservation lands for CTS and any management/restoration goals required to enhance the habitat;
 - Identify success criteria for monitoring both the breeding and estivation habitats that are consistent with similar habitats regionally;
 - Monitor restored habitats for at least five years;
 - Define and identify maintenance and management activities to manage the grassland habitats near the water tank to meet the stated goals of supporting habitat characteristics suitable for the CTS. This would include suitable fencing so as to control access, limited cattle grazing or other procedures to manage grass height and forage production at levels that benefit the CTS, and removal of trash, especially including potential hazardous materials.
 - Define and provide for a financial mechanism, such as a non-wasting endowment or an assessment district, that funds the management of the open space into perpetuity.

- The District is required to comply with applicable provisions of the federal Endangered Species Act, which would include obtaining take authorization from the USFWS for project-related losses as required by law. To obtain a take permit, consultation with the U.S. Fish and Wildlife Service would be initiated either through a federal nexus (i.e., Section 7 consultation, through the USACE) or through the pending Santa Clara Valley HCP process.
(i.e., Section 10 consultation).

MM BIO-1.2: Should the Santa Clara Valley HCP/NCCP be adopted prior to implementation of the project, and should the Gavilan Joint Community College District participate in the HCP/NCCP as a “participating special entity”, the following mitigation measure would reduce the project’s impacts to CTS to a less than significant level:

- The project applicant shall follow all requirements related to CTS set forth by the adopted Santa Clara Valley HCP/NCCP, including the submittal of all relevant applications, payment of all required fees for the disturbance of habitat, and completion of all necessary surveys. Fees paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for this species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-construction species surveys and seasonal restrictions on construction activities) to directly protect species. Through these measures, the conservation of the species is ensured and, therefore, the project’s impacts would be reduced to a less than significant level.

4.4.4.2 California Red-Legged Frog

MM BIO-2.1: To reduce impacts to CRLF to a less than significant level, the project will implement the following measures:

- The following measures shall be implemented during construction to avoid take of individual CRLF.
 - Prior to the start of construction, an approved qualified biologist shall train all construction personnel regarding habitat sensitivity, identification of special-status species, and required practices.
 - Pre-construction surveys shall be conducted to ensure that CRLF are absent from the construction area. If CRLF are present, they shall be relocated by a qualified biologist.
 - The construction zone shall be cleared, and silt fencing shall be erected and maintained around construction zones to prevent CRLF from moving into these areas.
 - A biological monitor shall be present onsite during particular times of construction to ensure no CRLF are harmed, injured, or killed during project buildout.

- Compensation for CTS estivation habitat will be sufficient for CRLF mitigation requirements, which would include a MMP which would cover both CTS and CRLF (refer to MM BIO-1).

- The District is required to comply with applicable provisions of the federal Endangered Species Act, which would include obtaining take authorization from the USFWS for project-
related losses as required by law. To obtain a take permit, consultation with the U.S. Fish and Wildlife Service would be initiated either through a federal nexus (i.e., Section 7 consultation, through the USACE) or through the pending Santa Clara Valley HCP process (i.e., Section 10 consultation).

MM BIO-2.2: Should the Santa Clara Valley HCP/NCCP be adopted prior to implementation of the project, and should the Gavilan Joint Community College District participate in the HCP/NCCP as a “participating special entity”, the following mitigation measure would reduce project’s impacts to CRLF to a less than significant level:

- The project applicant shall follow all requirements related to CRLF set forth by the adopted Santa Clara Valley HCP/NCCP, including the submittal of all relevant applications, payment of all required fees for the disturbance of habitat, and completion of all necessary surveys. Fees paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for this species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-construction species surveys and seasonal restrictions on construction activities) to directly protect species. Through these measures, the conservation of the species is ensured and, therefore, the project’s impacts would be reduced to a less than significant level.

4.4.4.3 Western Pond Turtles

MM BIO-3.1: To reduce impacts to WPT to a less than significant level, the project will implement the following measures:

- Prior to the start of construction, a qualified biologist shall train all construction personnel regarding habitat sensitivity, identification of special-status species, and required practices.

- Pre-construction surveys shall be conducted to ensure that western pond turtles (WPT) are absent from the construction area. If WPT are present, a qualified biologist possessing all necessary permits shall relocate them.

- Immediately following the pre-construction surveys, the construction zone shall be cleared, and silt fencing shall be erected and maintained around construction zones to prevent WPT from moving into these areas.

- A biological monitor shall be present onsite during particular times of construction to ensure no WPT are harmed, injured, or killed during project buildout.

MM BIO-3.2: Should the Santa Clara Valley HCP/NCCP be adopted prior to implementation of the project, and should the Gavilan Joint Community College District participate in the HCP/NCCP as a “participating special entity”, the following mitigation measure would reduce project’s impacts to WPT to a less than significant level:
The project applicant shall follow all requirements related to WPT set forth by the adopted Santa Clara Valley HCP/NCCP, including the submittal of all relevant applications, payment of all required fees for the disturbance of habitat, and completion of all necessary surveys. Fees paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for this species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-construction species surveys and seasonal restrictions on construction activities) to directly protect species. Through these measures, the conservation of the species is ensured and, therefore, the project’s impacts would be reduced to a less than significant level.

4.4.4.4 Burrowing Owls

MM BIO-4.1: To reduce impacts to burrowing owls to a less than significant level, the project will implement the following measures:

- A pre-construction survey shall be conducted by a qualified biologist for burrowing owls within 30 days of the on-set of construction. This survey will be conducted according to methods described in the Staff Report on Burrowing Owl Mitigation (CDFG 1995). All suitable habitats of the study area shall be covered during this survey.

- If pre-construction surveys undertaken during the breeding season (February 1 through August 31) locate active nest burrows within or near construction zones, these nests, and an appropriate buffer around them (as determined by a qualified biologist) shall remain off-limits to construction until the breeding season is over.

- If pre-construction surveys undertaken during the non-breeding season (September 1 through January 31) locate active nest burrows within or near construction zones, resident owls shall be relocated to alternative habitat. The relocation of resident owls must be according to a relocation plan prepared by a qualified biologist. Passive relocation will be the preferred method of relocation. This plan must provide for the owl’s relocation to nearby lands possessing available nesting and foraging habitat.

MM BIO-4.2: Should the Santa Clara Valley HCP/NCCP be adopted prior to implementation of the project, and should the Gavilan Joint Community College District participate in the HCP/NCCP as a “participating special entity”, the following mitigation measure would reduce project’s impacts to burrowing owls to a less than significant level:

- The project applicant shall follow all requirements related to burrowing owls set forth by the adopted Santa Clara Valley HCP/NCCP, including the submittal of all relevant applications, payment of all required fees for the disturbance of habitat, and completion of all necessary surveys. Fees paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for this species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-
construction species surveys and seasonal restrictions on construction activities) to directly protect species. Other requirements specific to this species may include a separate Burrowing Owl Fee, preconstruction surveying, and mapping of potential burrows within 30 days of ground disturbance to document evidence of owl presence or absence, avoidance of active burrows when possible, installation of one-way doors in occupied burrows during non-breeding season, construction monitoring of any buffer areas, and training of personnel. Through these measures, the conservation of the species is ensured and, therefore, the project’s impacts would be reduced to a less than significant level.

4.4.4.5 White-Tailed Kite, Golden Eagle, and Nesting Raptors

MM BIO-5.1: To reduce impacts to white-tailed kite, golden eagle, and nesting raptors to a less than significant level, the project will implement the following measures:

- Should project construction be scheduled to commence between February 1 and August 31, a pre-construction survey shall be conducted by a qualified biologist for nesting birds within the onsite trees as well as all trees within 250 feet of the site. This survey shall occur within 30 days of the on-set of construction.

- If pre-construction surveys undertaken during the nesting season locate active nests within or near construction zones, these nests, and an appropriate buffer around them (as determined by a qualified biologist) shall remain off-limits to construction until the nesting season is over. Suitable setbacks from occupied nests shall be established by a qualified biologist and maintained until the conclusion of the nesting season.

MM BIO-5.2: Should the Santa Clara Valley HCP/NCCP be adopted prior to implementation of the project, and should the Gavilan Joint Community College District participate in the HCP/NCCP as a “participating special entity”, the following mitigation measure would reduce project’s impacts to golden eagles to a less than significant level. MM BIO-5.1 would still be required for impacts to white-tailed kites and other non-listed nesting raptors, since they are not covered by the HCP/NCCP:

- The project applicant shall follow all requirements related to golden eagles set forth by the adopted Santa Clara Valley HCP/NCCP, including the submittal of all relevant applications, payment of all required fees for the disturbance of habitat, and completion of all necessary surveys. Fees paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for this species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-construction species surveys and seasonal restrictions on construction activities) to directly protect species. Through these measures, the conservation of the species is ensured and, therefore, the project’s impacts would be reduced to a less than significant level.
4.4.4.6 *San Francisco Dusky-Footed Woodrats*

MM BIO-6: To reduce impacts to dusky-footed woodrats to a less than significant level, the project will implement the following measures:

- A qualified biologist shall conduct a pre-construction survey for San Francisco dusky-footed woodrat nests no more than 30 days prior to the onset of construction activities within 50 feet of construction zones around the water tank only. Woodrat surveys in other areas of the project site are not warranted.

- Identified nests shall be avoided, where possible. If avoidance is not possible, the nest(s) shall be manually deconstructed when helpless young are not present, typically during the non-breeding season (October through January).

- If it is determined that young may be present during the pre-construction survey, a suitable buffer shall be established around the nest until the young are independent enough to successfully move from the deconstructed nest.

4.4.4.7 *American Badger*

MM BIO-7: To reduce impacts to American badgers to a less than significant level, the project will implement the following measures:

- Pre-construction surveys conducted for burrowing owls no more than 30 days prior to the onset of construction activities shall also be used to determine the presence or absence of badgers in the development footprint.

- If an active badger den is identified during pre-construction surveys within or immediately adjacent to the construction envelope, a construction-free buffer of up to 300 feet (or distance specified by the resource agencies, i.e., CDFG) shall be established around the den. Because badgers are known to use multiple burrows in a breeding burrow complex, a biological monitor shall be present onsite during construction activities to ensure the buffer is adequate to avoid direct impact to individuals or nest abandonment. The monitor would be necessary onsite until it is determined that young are of an independent age and construction activities would not harm individual badgers.

- Once it has been determined that badgers have vacated the site, the burrows can be collapsed or excavated, and ground disturbance can proceed.

4.4.4.8 *Round-leaved Filaree and Congdon’s Tarplant*

MM BIO-8: To reduce impacts to round-leaved filaree and Congdon’s tarplant to a less than significant level, the project will implement the following measures:

- Three botanical surveys (scheduled in March, June and late October) shall be conducted within the grassland habitat to confirm the presence/absence of these species on the site.
If the botanical surveys reveal the presence of round-leaved filaree and/or Congdon’s tarplant, and the project cannot be designed to avoid substantial impacts, a Site Restoration Plan shall be developed for the significantly impacted species by a qualified botanist or plant ecologist prior to the start of project construction. The objective of the Site Restoration Plan would be to replace the special-status plants and habitat lost during project implementation. The proposed restoration program shall be monitored for a period of five years from the date of site grading. The Site Restoration Plan should contain at a minimum the following:

- Identification of appropriate locations onsite as determined by the botanist or plant ecologist (i.e., areas with suitable soils, aspect, and hydrology) to restore lost plant populations.

- A description of the propagation and planting techniques to be employed in the restoration effort. Perennial plants to be impacted by site grading shall be salvaged and raised in a greenhouse for eventual transplanting within the restoration areas. Annual plants can best be established by collecting seeds of onsite plants prior to project implementation and then directly seeding into remaining suitable habitat.

- A timetable for implementation of the restoration plan.

- A monitoring plan and performance criteria.

- A description of remedial measures to be performed in the event that initial restoration measures are unsuccessful in meeting the performance criteria.

- A description of site maintenance activities to follow restoration activities. These may include weed control, irrigation, and control of herbivory by livestock and wildlife.

If an onsite restoration plan is not feasible, mitigation for impacted special-status plant species could be accommodated through restoration or preservation at an off-site location. Any off-site restoration plan would be subject to the same minimum requirements as indicated above for an onsite restoration plan.

If off-site preservation is the mitigation alternative chosen, then the mitigation site must be confirmed to support populations of the impacted species and must be established as a conservation easement to be preserved in perpetuity. A qualified botanist or plant ecologist shall prepare a Preservation Plan for the site containing, at a minimum, the following elements:

- A monitoring plan and performance criteria for the preserved plant population.

- A description of remedial measures to be performed in the event that performance criteria are not met.

- A description of maintenance activities to be conducted on the site including weed control, trash removal, irrigation, and control of herbivory by livestock and wildlife.
The District would be responsible for funding the development and implementation of any onsite or off-site Preservation Plan.

4.4.4.9 Riparian Habitat, Federally Protected Wetlands, and Other Sensitive Natural Communities

MM BIO-9.1: To reduce impacts to riparian habitat, federally protected wetlands, and other sensitive natural communities to a less than significant level, the project will implement the following measures:

- Prior to construction, construction fencing shall be placed around riparian areas adjacent to proposed project elements, including the Parking Lot C Extension and the Riparian Habitat outdoor classroom, to ensure that construction activities do not inadvertently impact these areas.

- Any proposed future lighting on the property (e.g., footpath lighting) shall be designed to minimize light and glare impacts to the riparian corridor. To the maximum extent practicable, light sources shall not be visible from the more natural riparian habitat areas occurring west of the developed environs of the campus. Additionally, the Riparian Habitat outdoor classroom shall be designed to avoid the loss of trees within and adjacent to the channel to the maximum extent practicable.

- As compensation for the permanent loss of approximately 140 linear feet and approximately 0.02 acres of jurisdictional channel as a result of the Parking Lot C Expansion and potentially a small amount of riparian area within the jurisdiction of CDFG as a result of the development of the Riparian Habitat outdoor classroom, the District will prepare, implement and fund a Mitigation and Monitoring Plan (MMP). The MMP would result in the creation of in-kind or better quality riparian or wetland habitat at a minimum ratio of 2:1 creation:loss for impacts to the channel below the duck pond, and a minimum of a 2:1 enhancement:loss for any riparian habitat impacted as a result of the outdoor classroom. It appears that adequate opportunities exist onsite to accommodate these compensatory measures; however, if these measures cannot be accommodated onsite, then offsite restoration would be necessary. Compensation measures shall include:

 - Creation of riparian channel habitat or wetlands at a ratio of 2:1 (creation:loss) ratio for impacts to the channel downstream of the duck pond as a result of the Parking Lot C Expansion.

 - Enhancement of riparian habitat at a ratio of 2:1 (enhancement:loss) for any impacts to riparian habitat as a result of the construction of the outdoor classroom.

 - Replacement of any native riparian trees with a diameter-at-breast-height (DBH) of four inches or greater at a ratio of 3:1 (replacement:removal), and a 10:1 (replacement:removal) ratio for trees with a DBH greater than 24 inches, with the same native riparian species or with other riparian species that would occur in natural riparian habitats in the site’s vicinity and elevation.
These measures shall be implemented according to a MMP developed by a qualified restoration ecologist and which is approved by the District and any regulatory agencies from which permits may be required for impacts to jurisdictional waters of the site. The MMP will, at a minimum, include the following:

- A map showing the location(s) of all enhancement and creation activities;
- Evidence of a suitable water budget to support any created wetland and riparian habitats;
- Identification of the species, numbers and locations of plantings to be installed;
- Identification of the time of year for planting (preferably in fall or winter) and the methods for supplemental watering during the establishment period;
- Identification of the monitoring period, which should be not less than five years, and definition of success criteria that will be required for the mitigation to be deemed a success;
- Identification of adaptive management procedures that accommodate the uncertainty that comes with mitigation projects. These include (but are not limited to) measures to address colonization by invasive species, unexpected lack of water, and excessive foraging of installed plants by native wildlife;
- Required management and maintenance activities (removal of invasive species, providing for supplemental water, and repair of water delivery systems,); and
- A mechanism for surety in funding the preparation, implementation and monitoring of the MMP, and ensures that mitigation sites are preserved and managed into perpetuity.

- The District is required to comply with all applicable state and federal regulations related to construction work that will impact jurisdictional areas of the site. The project will require a Clean Water Act Section 404 permit from USACE; a Clean Water Act Section 401 Certification or Waiver of Requirements from RWQCB; and a Section 1600 Streambed Alteration Agreement from the CDFG prior to initiating any construction activities within jurisdictional areas.

MM BIO-9.2: Should the Santa Clara Valley HCP/NCCP be adopted prior to implementation of the project, and should the Gavilan Joint Community College District participate in the HCP/NCCP as a “participating special entity”, the following mitigation measure would reduce project’s impacts to riparian habitat, federally protected wetlands, and other sensitive natural communities to a less than significant level:

- The project applicant shall follow all requirements related to riparian habitat, federally protected wetlands, and other sensitive natural communities set forth by the adopted Santa Clara Valley HCP/NCCP, including the submittal of all relevant applications, payment of all required fees for the disturbance of habitat, and completion of all necessary surveys. Fees
paid in accordance with the extent and nature of a project’s impacts would be used to further conservation efforts via the acquisition, creation, or enhancement, as well as the preservation and management, of habitat for protected species. In addition, covered projects are subject to a number of measures concerning avoidance and minimization of impacts to covered species and habitats through project design and construction measures (e.g., pre-construction species surveys and seasonal restrictions on construction activities) to directly protect species.
Through these measures, the conservation of sensitive natural communities is ensured and, therefore, the project’s impacts would be reduced to a less than significant level.

4.4.5 Conclusion

With implementation of the mitigation measures listed above, the proposed project would not result in significant impacts to biological resources. (Less than Significant Impact with Mitigation)
4.5 CULTURAL RESOURCES

The discussion in this section is based upon an archaeological literature review for the project, as well as field inspections of the project site, completed by Holman and Associates, Archaeological Consultants in July 2011 and March 2012. Copies of these reports are included as Appendix B of this Initial Study.

4.5.1 Regulatory Setting

Cultural resources are sites, buildings, structures, objects, and districts that may have traditional or cultural value for their historical significance. Cultural resources include a broad range of resources, examples of which include archaeological sites, historic roadways and railroad tracks, and buildings of architectural significance. Generally, for a cultural resource to be considered a historical resource for purposes CEQA (CCR Section 15064.5(a)), it generally must be 50 years or older and (1) listed in, or determined eligible for listing in, the California Register of Historical Resources by the State Historical Resources Commission; (2) listed in a local register of historical resources, as defined in PRC Section 5020.1(k) or identified as significant in a survey meeting the requirements of PRC Section 5024.1(g); or (3) formally recognized by a lead agency as constituting a historical resource.

Under CEQA, paleontological resources are a subset of cultural resources and include fossil plants and animals, and evidence of past life such as trace fossils and tracks. Ancient marine sediments may contain invertebrate fossils representing snails, clam and oyster shells, sponges, and protozoa; and vertebrate fossils such as fish, whale, and sea lion bones. Terrestrial sediments may contain fossils that represent such vertebrate land mammals as mammoth, camel, saber tooth cat, horse, and bison.

4.5.2 Existing Setting

The project site is developed with a college campus. Undeveloped foothills are located west and south of the campus, and agricultural fields are located east of Santa Teresa Boulevard.

A prehistoric and historic site record and literature search was completed at the California Historical Resources Information System, Northwest Information Center (File No. 10-1283) on June 27, 2011. No historic or prehistoric cultural resources have been formally recorded on or within one-quarter mile of the project site. A recorded prehistoric site is located over a mile northwest of the campus.

An archaeological field inspection of the campus was completed on July 14, 2011. An inspection of portions of the agricultural properties to the east, in the area of the existing and proposed wells and associated water distribution lines, was completed on March 3, 2012. No cultural resources were found during the field inspections.

Based on the results of the literature review and field inspections, the project site was determined to be located in an area with low to moderate archaeological sensitivity.
A historic chapel is located on the southwestern portion of the campus, adjacent to Gavilan Creek. The chapel was constructed in 1893 at the location of Dunneville Corners in the City of Hollister as the San Felipe Community Church, and was eventually abandoned until Gavilan College’s first president (Ralph Schroder) purchased it with assistance from Native Daughters of the Golden West, and had it moved to the Gilroy campus. Between 1972 and 1975, Gavilan College construction technology students renovated the building. A second renovation occurred in 2005.

4.5.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>CULTURAL RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Cause a substantial adverse change in the significance of an historical resource as defined in §15064.5?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>1,6,7</td>
</tr>
<tr>
<td>2) Cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>1,6,7</td>
</tr>
<tr>
<td>3) Directly or indirectly destroy a unique paleontological resource or site, or unique geologic feature?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>1,6,7</td>
</tr>
<tr>
<td>4) Disturb any human remains, including those interred outside of normal cemeteries?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>1,6,7</td>
</tr>
</tbody>
</table>

4.5.2.1 Cultural Resources Impacts

The project proposes ground disturbing activities in various locations throughout the developed areas of the campus, in the undeveloped hillside area adjacent to the existing water tank, and in the roadways and agricultural areas east of the site. Although no known cultural resources are located on or adjacent to the site, there is a potential that buried historical or prehistoric resources would be present on site. The disturbance of these resources during excavation and construction could be a significant impact.

Impact CR-1: Construction activities associated with the proposed project could result in impacts to buried cultural resources, should they be discovered on site. [Significant Impact]
4.5.2.2 Historic Resources Impacts

The proposed project would remove several portable structures and one permanent building (Building CJ500) on the site. The portable structures and Building CJ500 are not of historic significance as they lack association with local themes or patterns of significance, are not associated with significant figures in local history; nor are they distinguished examples academic architecture in Santa Clara County. The structures to be removed are not listed on any federal, state, or local lists of historical significance. The structures do not appear to be eligible for the California Register of Historical Resources, as they lack significance under the State’s criteria. Based on this determination, the demolition of these structures and other site clearing activities would have a less than significant impact on historic resources.

The project would construct the Wetlands Overlook outdoor classroom in the vicinity of the historic chapel, which is located adjacent to Gavilan Creek in the southwest corner of the campus (refer to Figure 10 and Photo 7). Although the chapel is not listed on any historic register, it could be considered a historical resource for CEQA purposes due to its age. The proposed outdoor classroom would include a raised deck located on the slope just below the chapel, with multi-level, stepped amphitheater seating overlooking a nearby pond. The classroom would also include construction of an ADA-compliant paved pathway from the Campus Loop Road up to the chapel and classroom. The classroom and pathway would change the visual character of the area adjacent to the chapel; however, because the building was moved from its original location to the site, and therefore is not located in its original historic context, the project would not cause a substantial adverse change in the significance of a historical resource.

4.5.2.3 Paleontological Resources Impacts

Although no known paleontological resources are located on or adjacent to the site, there is a potential that buried paleontological resources would be present on site. The disturbance of these resources during excavation and construction could be a significant impact.

Impact CR-2: Construction of the proposed project could result in impacts to paleontological resources, should they be discovered on site. [Significant Impact]

4.5.3 Mitigation and Avoidance Measures

4.5.4.1 Cultural Resources

No buried cultural resources are known to be located on the site. There is always a possibility, however, that unknown resources could be discovered during the redevelopment of the site. Therefore, the following mitigation measures are identified to avoid or reduce significant impacts to a less than significant level:

MM CUL-1: The following mitigation measures will be implemented during construction to avoid significant impacts to unknown cultural resources:
In the event that prehistoric or historic resources are encountered during excavation and/or grading of the site, all activity within a 50-foot radius of the find will be stopped, the Santa Clara County Director of Planning will be notified, and a qualified archaeologist will examine the find and make appropriate recommendations prior to issuance of building permits. Recommendations could include collection, recordation, and analysis of any significant cultural materials. A report of findings documenting any data recovery during monitoring would be submitted to the Director of Planning.

In the event that human remains are discovered during excavation and/or grading of the site, all activity within a 50-foot radius of the find will be stopped. The Santa Clara County Coroner will be notified and shall make a determination as to whether the remains are of Native American origin or whether an investigation into the cause of death is required. If the remains are determined to be Native American, the Coroner will notify the Native American Heritage Commission (NAHC) immediately. Once NAHC identifies the most likely descendants, the descendants will make recommendations regarding proper burial, which will be implemented in accordance with Section 15064.5(e) of the CEQA Guidelines. If the NAHC is unable to identify a most likely descendent, the most likely descendent fails to make a recommendation, or the landowner rejects the recommendation of the descendent and the mediation by the NAHC fails to provide measures acceptable to the landowner, the landowner shall rebury the Native American human remains and associated grave goods with appropriate dignity on the property in a location not subject to further subsurface disturbance.

4.5.4.2 Paleontological Resources

No paleontological resources are known to be located on the site. There is always a possibility, however, that unknown resources could be discovered during the redevelopment of the site. Therefore, the following mitigation measures are identified to avoid or reduce significant impacts to a less than significant level:

MM CUL-2: If vertebrate fossils are discovered during construction, all work on the site will stop immediately until a qualified professional paleontologist can assess the nature and importance of the find and recommend appropriate treatment. Treatment may include preparation and recovery of fossil materials so that they can be housed in an appropriate museum or university collection and may also include preparation of a report for publication describing the finds. The Gavilan Joint Community College District will be responsible for ensuring that the recommendations of the paleontological monitor regarding treatment and reporting are implemented.

4.5.4 Conclusion

Implementation of the proposed project with the mitigation measures included in the project would result in a less than significant cultural resources impact. [Less Than Significant Impact with Mitigation Measures Incorporated in the Project]
4.6 GEOLOGY

The following discussion is based in part upon a geotechnical investigation prepared for the proposed water distribution system improvements by RMA Group in May 2012. A copy of this report is included as Appendix C to this Initial Study.

4.6.1 Existing Setting

4.6.1.1 Regional Geology

The project area is located within the Coast Ranges geomorphic province. This province consists of northwest trending mountain ranges and valleys that extend from southern California to Oregon. The bedrock within the Coast Ranges consists of a belt of sedimentary, volcanic and metamorphic rocks that have been deformed by stresses concentrated along the San Andreas fault zone. Valleys within the Coast Ranges are filled with Holocene age alluvium and older sedimentary deposits.

The Gavilan campus is situated on the eastern flank of the Santa Cruz Mountains. In the vicinity of the campus, the Santa Cruz Mountains are composed of Mesozoic age Franciscan Assemblage and serpentine bedrock. The flat portions of the campus, as well as the water distribution and well infrastructure located east of the campus, extend into the southern Santa Clara Valley. This portion of the Santa Clara Valley is also known as the Gilroy-Hollister Groundwater Basin and is underlain by varying thicknesses of Holocene and Pleistocene age alluvium.

4.6.1.2 Site Topography and Soils

The campus slopes from west to east as a result of its location at the base of foothills associated with the Santa Cruz Mountains. The existing water tank is located in the foothills above campus, at an elevation of approximately 435 feet. The eastern portion of the campus and the water distribution and well infrastructure located in the agricultural fields across Santa Teresa Boulevard rest on the relatively flat ground of the Santa Clara Valley floor.

Subsurface borings were taken in the area of the existing water tank. The borings revealed up to three feet of artificial fill associated with the graded surface upon which the tank was constructed. The borings also encountered bedrock consisting of Franciscan Assemblage Greywacke composed of sandstone. A 1.5-foot layer of topsoil consisting of light brown lean clay with sand was also encountered in some of the borings in this area.

The flatter portions of the site located near the valley floor consist of silty sand, silty and sandy clays, sandy gravel and gravelly sand underlain by younger and older alluvium. Younger alluvial deposits are located in the northeast part of the campus and to the east of project site and are composed of gravel, sand and clay. A map showing the surface soils on the site is included in the Biological Resources Report prepared for the project (Appendix A). Since the near-surface soils on site consist partly of clay, they are considered to be expansive. The sandstone beneath the water tank, however, is not expansive.

Depth to groundwater in a monitoring well located a quarter mile east of the campus ranged from 16 to 32 feet between 2009 and 2011. Depth to groundwater can vary seasonally, based on rainfall and groundwater migration patterns.
4.6.1.3 Seismicity and Seismic Hazards

The project site is located within the seismically active San Francisco Bay region, but is not located within a currently designated Alquist-Priolo Earthquake Fault Zone. The major earthquake faults in the project area are the San Andreas Fault, located approximately six miles southwest of the site, and the Calaveras Fault, located approximately 6 miles northeast of the site. These regional faults are capable of generating earthquakes of at least 7.0 in magnitude.

A Santa Clara Fault Rupture Hazard Zone runs northwest to southeast across the eastern portion of the campus and portions of the agricultural fields across Santa Teresa Boulevard. The Hazard Zone was established along the postulated trace of the Carnadero fault. Terrasearch Inc. investigated the eastern branch of the Carnadero fault within the campus in 2006 and 2007. The investigation, which included trenching across suspected fault locations, did not encounter faulting. The locations of the fault zone and approximate locations of the prior Terrasearch Inc. fault investigation are included in Appendix C.

The Association of Bay Area Governments (ABAG) has reported that the Working Group on California Earthquake Probabilities (2003) has estimated that there is a 62 percent probability that one or more major earthquakes would occur in the San Francisco Bay Area between 2002 and 2031. Should a moderate to major earthquake on the San Andreas Fault occur it will most likely generate the strongest ground shaking at the site.

Liquefaction

Liquefaction is a phenomenon where saturated sand and silt take on the characteristics of a liquid during the intense shaking of an earthquake. The area in the vicinity of the existing and proposed water tanks is underlain by bedrock and is therefore not subject to liquefaction. Portions of the agricultural fields across Santa Teresa Boulevard to the east are located within a County Liquefaction Hazard Zone (see Appendix C for the full extent of the Hazard Zone).

Landslides

The project site is not located within a Santa Clara County Landslide Hazard Zone, and no landslides are known to be present in the areas proposed for project activities. However, soils covering bedrock on slopes descending from the site of the existing water tank are likely subject to creep and possible surficial instability related to heavy rainfall. The gradient of the ground surface within the campus and to the east of Gavilan College is low and thus not prone to landsliding.
Environmental Checklist and Discussion of Impacts

GEOLOGY AND SOILS

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>a) Rupture of a known earthquake fault, as described on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? (Refer to Division of Mines and Geology Special Publication 42.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>b) Strong seismic ground shaking?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>c) Seismic-related ground failure, including liquefaction?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>d) Landslides?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>2) Result in substantial soil erosion or the loss of topsoil?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>3) Be located on a geologic unit or soil that is unstable, or that will become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>4) Be located on expansive soil, as defined in Section 1802.3.2 of the California Building Code (2007), creating substantial risks to life or property?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
<tr>
<td>5) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 8</td>
</tr>
</tbody>
</table>
4.6.2.1 Geology and Soils Impacts

Water Storage, Tank Distribution and Well Improvements

As described in Section 3.0, Project Description, the project proposes to construct two 669,000-gallon water tanks in the location of the existing 1,000,000-gallon water tank, which will be demolished. The tanks will be located on a pad occupied by the existing water storage tank. The tank pad will be enlarged by excavating into an ascending hill on the west side of the pad. A five-foot high retaining wall will be constructed on the west side of the pad. The elevation of the remainder of the existing pad will remain essentially unchanged. The tank site is underlain by bedrock, and is not subject to liquefaction, settlement, or landslides.

The tanks would be connected to two wells located east of the campus by a water distribution system consisting of pipelines traversing the entire site. Portions of these pipelines would be located in the sloped areas of the hillside adjacent to the water tanks, which are subject to creep and possible surficial instability related to heavy rainfall, and other portions would be located within the Santa Clara Fault Rupture Hazard Zone associated with the Carnadero fault trace. The proposed wells would also be located within the Fault Rupture Hazard Zone. In addition, the wells and portions of the pipelines would be located within a liquefaction hazard zone.

Implementation of the recommendations in the site-specific geotechnical investigation prepared for the proposed water distribution system improvements (refer to Appendix C), along with standard engineering practices, would ensure that no significant geology and soils impacts would occur from implementation of the proposed project, including impacts related to unstable soil, expansive soil, soil erosion, and the loss of topsoil.

GECA Consolidation and Parking Lot C Expansion

The GECA Consolidation and Parking Lot C Expansion aspects of the project would not be exposed to slope instability, erosion, or landslide related hazards due to the relatively flat topography of the area in which they will be implemented. The portable buildings would connect to an existing sanitary sewer system, and thus would have no impact related to soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems.

Outdoor Classrooms

The proposed outdoor classrooms and associated pathways will be designed and constructed in accordance with standard engineering safety techniques and in conformance with a final design-specific geotechnical report prepared for the site, reducing any potential hazards from soil conditions such as unstable soil, expansive soil, soil erosion, and loss of topsoil. A qualified geotechnical specialist shall also monitor site preparation and installation of the classrooms and pathways to insure conformance with the required design specifications.

4.6.2.2 Seismicity and Seismic Hazards

As previously discussed, the project site is located in a seismically active region, and as such, strong to very strong ground shaking would be expected during the lifetime of the proposed project. To
avoid or minimize potential damage from seismic shaking, the structures proposed by the project would be designed and constructed in accordance with requirements and seismic design guidelines in the 2010 California Building Code, Design Category D. All plans would be subject to review by the California Division of the State Architect. As noted above, the proposed water tank site is graded and underlain by bedrock, and is not subject to liquefaction, settlement, or landslides. The portions of the proposed water distribution pipelines to be located within the liquefaction hazard zone would be equipped with flexible connections and automatic shutoff valves to minimize potential damage from liquefaction, as recommended in the site-specific geotechnical investigation (refer to Appendix C). With the implementation of these standard practices, the project will not expose people or property to significant impacts associated with geologic conditions on site.

Implementation of standard engineering techniques during construction would avoid or minimize potential damage from compressible soils, expansive soils, and seismic shaking and liquefaction on the site.

4.6.3 Conclusion

With the use of standard engineering and seismic design techniques and conformance with regulatory standards, construction of the proposed project would result in less than significant geology or soils impacts, and would not significantly expose people or structures to adverse seismic risks. [Less Than Significant Impact]
4.7 GREENHOUSE GAS EMISSIONS

4.7.1 Existing Setting

Unlike emissions of criteria and toxic air pollutants, which have local or regional impacts, emissions of greenhouse gases (GHGs) have a broader, global impact. Global warming is a process whereby GHGs accumulating in the atmosphere contribute to an increase in the temperature of the earth’s atmosphere. The principal GHGs contributing to global warming are carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and fluorinated compounds. Emissions of GHGs contributing to global climate change are attributable in large part to human activities associated with the transportation, industrial/manufacturing, utility, residential, commercial, and agricultural sectors.

In September 2006, Governor Schwarzenegger signed the Global Warming Solutions Act (Assembly Bill (AB) 32), which was created to address the Global Warming situation in California. The Act requires that the GHG emissions in California be reduced to 1990 levels by 2020. This is part of a larger plan in which California hopes to reduce its emissions to 80 percent below 1990 levels by 2050. This reduction shall be accomplished through an enforceable statewide CAP on GHG emissions that shall be phased in starting in 2012 and regulated by the CARB. With this Act in place, CARB is in charge of setting specific standards for different source emissions, as well as monitoring whether they are being met.

The California Natural Resources Agency, as required under state law (Public Resources Code §21083.05) has amended the state CEQA Guidelines to address the analysis and mitigation of greenhouse gas emissions, effective March 18, 2010. In these changes to the CEQA Guidelines, Lead Agencies, such as the Gavilan Joint Community College District, retain discretion to determine the significance of impacts from greenhouse gas emissions based upon individual circumstances. Neither CEQA nor the CEQA Guidelines provide a specific methodology for analysis of greenhouse gases and under the amendments to the CEQA Guidelines, a Lead Agency may describe, calculate or estimate greenhouse gas emissions resulting from a project and use a model and/or qualitative analysis or performance based standards to assess impacts.

4.7.1.3 Existing Site

The 150-acre project site is currently developed with an active community college campus. Current uses on the site generate indirect emissions from operational electricity and water use, and direct emissions from vehicle trips generated by the students and faculty.
4.7.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>GREENHOUSE GAS EMISSIONS</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>1) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td>1.4</td>
</tr>
<tr>
<td>2) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td>1.4</td>
</tr>
</tbody>
</table>

4.7.3.1 Greenhouse Gas Emissions Impacts

As discussed in CEQA Guidelines Section 15064(b), the determination of whether a project may have a significant effect on the environment calls for careful judgment on the part of the Lead Agency and must be based to the extent possible on scientific and factual data. As described previously, in Section 4.3, Air Quality, the Gavilan Joint Community College District considers the BAAQMD thresholds to be based on the best information available for the San Francisco Bay Area Air Basin. Therefore, the BAAQMD thresholds have been used in this analysis to determine the project’s impact on GHG emissions.

Greenhouse gas emissions from the proposed project would include emissions from construction and operation of the project. The GHG emissions from the project include:

- Construction emissions;
- Mobile emissions (e.g., emissions from combustion of fossil fuels for vehicle trips to and from the site)
- Emissions from the generation of electricity to operate lighting, appliances, and HVAC on the site, and to convey water to the site.

Given the overwhelming scope of global climate change, it is not anticipated that a single development project would have an individually discernable effect on global climate change. It is more appropriate to conclude that the greenhouse gas emissions generated by the proposed project would combine with emissions across the state, nation, and globe to cumulatively contribute to global climate change.

Operational Impacts

The project proposes to implement several physical improvements to the campus (refer to Section 3.0, Project Description). While the improvements would alter the use of facilities within the campus, none would increase the overall student capacity of the campus, meaning no new vehicle trips would result from the proposed project. The project, therefore, would not result in ongoing
operational GHG emissions associated with vehicle trips.

The proposed outdoor classrooms would not be heated, but may utilize small amounts of electricity for lighting. Additionally, although the proposed water distribution system improvements would replace an existing system, the improved distribution may result in a slight increase in electricity use related to the increased pumping of water. Indirect GHG emissions from these potential increases in electricity use would be negligible. The project would not increase the square footage of buildings on the site that require heating, and thus would not increase the use of natural gas and the GHG emissions that would result.

Construction Impacts

The proposed project would result in minor increases in GHGs associated with construction activities. Project construction would result in GHG emissions from construction-related sources, including construction equipment emissions and emissions from construction workers’ personal vehicles traveling to and from the construction site. Construction-related GHG emissions vary depending on the level of activity, length of the construction period, specific construction operations, types of equipment, and number of personnel. BAAQMD has not established a quantitative threshold or standard for determining whether a project's construction-related GHG emissions are significant. Because GHG emission from construction activities would be temporary, construction of the project would not interfere with the implementation of AB 32, and thus would not result in a significant GHG impact.

4.7.4 Conclusion

The proposed project would not generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment, nor would it conflict with any existing GHG laws, plans, policies, or regulations adopted by the California legislature, the CARB, or BAAQMD. Therefore, this impact would be less than significant. [Less Than Significant Impact]
4.8 HAZARDS AND HAZARDOUS MATERIALS

4.8.1 Existing Setting

4.8.1.1 Site Conditions and History

Prior to development of the project site with a college campus in the 1960’s, the site and surrounding area were used as grazing land. Agricultural uses are located east of the site across Santa Teresa Boulevard.

Leaking Underground Storage Tanks (LUSTs)

Swimming Pool, Business Building, and Physics Building LUSTs

In September 1990, three 550-gallon LUSTs were removed near the swimming pool, Business Building, and Physics Building, respectively. All three LUSTs stored diesel fuel.

Soil samples collected near the time of removal in the vicinity of the swimming pool LUST, located at the southern end of the campus, were reported to contain 10,000 parts per million (ppm) total petroleum hydrocarbons as diesel (TPHd) at 11 feet below ground surface (bgs). The deepest sample collected at 17 feet bgs was reported to contain 13 ppm TPHd. In August 2009, soil samples were again collected in the area of contamination and did not contain concentrations of the constituents of concern (COCs) above the laboratory reporting limit. Likewise, a groundwater sample collected during the same boring was not reported to have concentrations of the COCs present above the laboratory reporting limit.

Soil samples collected near the time of removal in the vicinity of the Business Building LUST, located in the western portion of the central campus area, were reported to contain up to 1,500 ppm TPHd and 0.15 ppm Toluene. Benzene was not reported to be present in either sample above the laboratory reporting limit. In August 2009, soil samples collected in the area of contamination were not reported to have concentrations of the COCs present above the laboratory reporting limit. A groundwater sample was collected during the same boring and did not contain concentrations of the COCs present above the laboratory reporting limit.

Soil samples collected in the vicinity of the Physics Building LUST, located in the eastern portion of the central campus area, were reported to contain 8,700 ppm TPHd. Soil in the vicinity of the LUST was excavated and removed from the site. Following soil excavation, a soil sample collected from the area did not show concentrations of the COCs above the laboratory reporting limits.

Maintenance Yard LUSTs

In October 1990, two gasoline LUSTs were removed from the maintenance yard located at the north end of campus. One of the LUSTs was noted to have holes upon removal. Four soil samples were collected from 14 feet bgs and were reported to contain up to 200 ppm TPH as Gasoline (TPHg), 3.5 ppm Benzene, 10 ppm Toluene, 3.7 ppm Ethylbenzene, and 18 ppm Xylenes.
In 1991, the LUST was removed, and 350 cubic yards of surrounding soil were excavated and stockpiled onsite. The excavation was approximately 16 feet deep. The excavation was backfilled with imported fill material following sampling. Hydrocarbon odors and soil discoloration were apparent in the east and south sidewalls of the excavation area; however, excavation could not be extended in these areas due to the presence of fencing, structures, and access thoroughfares.

In June 1992, three groundwater monitoring wells were installed in the maintenance yard area. Initial sampling of groundwater reported maximum concentrations of 190,000 parts per billion (ppb) TPHg, 59,000 ppb Benzene, 65,000 ppb Toluene, 2,400 ppb Ethylbenzene, and 20,000 ppb Xylenes in a well located upgradient of the excavation area. Additional monitoring wells were installed, and periodic monitoring of the wells commenced. An additional 780 cubic yards of soil was excavated and removed from the fuel LUSTs area in the maintenance yard. The final excavation was approximately 20 feet deep.

In May 1994, a groundwater extraction system began operating in the maintenance yard area. Contaminated groundwater was extracted and then treated prior to reinjection back into the ground through an injection well. The extraction system operated through at least 1999. Subsequent groundwater extraction was completed between 2007 and 2010, and the presence of contaminants was found to be declining.

In July 2012, the Santa Clara County Department of Environmental Health granted case closure status for the maintenance yard LUSTs, while noting that the following conditions remained on the site: residual contamination remains in soil of 480 ppm TPHg, 10,000 ppm TPHd, 1.5 ppm Benzene, 2.5 ppm Toluene, nine ppm Ethylbenzene, 51 ppm Xylenes, and 10 ppm Methyl tert Butyl Ether (MtBE); and in groundwater of 270 ppb TPHg, 36 ppb Benzene, 0.56 ppb Toluene, two ppb Ethylbenzene, 1.4 ppb Xylenes, and 230 ppb MtBE. The County concluded that the residual contamination in soil and groundwater at the site could pose an unacceptable risk under certain site development activities such as site grading, excavation, or the installation of water wells. The levels of residual contamination and any associated site risk are expected to reduce with time.

Asbestos and Lead Based Paint

Friable asbestos is any asbestos containing material (ACM) that, when dry, can easily be crumbled or pulverized to a powder by hand allowing the asbestos particles to become airborne. Common examples of products that have been found to contain friable asbestos include acoustical ceilings, plaster, wallboard, and thermal insulation for water heaters and pipes. Non-friable ACMs are materials that contain a binder or hardening agent that does not allow the asbestos particles to become airborne easily. Common examples of non-friable ACMs are asphalt roofing shingles, vinyl asbestos floor tiles, and transite siding made with cement. Non-friable ACMs can pose the same hazard as friable asbestos during remodeling, repairs, or other construction activities that would damage the material. Use of friable asbestos products was banned in 1978.

In 1978, the Consumer Products Safety Commission banned paint and other surface coating materials containing lead.
Because the GECA portables, former Police Academy portables, and Building CJ500 were constructed after 1980, it is unlikely that ACMs and/or lead based paints are present in the structures. However, the exterior paint on the existing water tank contains lead.

4.8.1.2 Surrounding Sites

Agricultural uses are located east of the campus across Santa Teresa Boulevard. It is reasonable to assume that pesticides and other agricultural chemicals have been used as part of the normal agricultural operations. It is common to find arsenic, lead, and dichlorodiphenyltrichloroethylene (DDT) residue in the soil in Santa Clara County from historic farming operations.

4.8.1.3 Other Hazards

The project site is not within the safety zone or planning area for any airport.

The project site is located in an area defined by the California Department of Forestry to have a moderate to high risk of wildfire.\(^6\)

4.8.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>HAZARDS AND HAZARDOUS MATERIALS</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Create a significant hazard</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1.9</td>
</tr>
<tr>
<td>to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Create a significant hazard</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>1.9</td>
</tr>
<tr>
<td>to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1.9</td>
</tr>
</tbody>
</table>

\(^6\) California Department of Forestry (CalFire), State Responsibility Areas Interactive Wildfire Threat Map. 2003. http://quake.abag.ca.gov/wildfires/
HAZARDS AND HAZARDOUS MATERIALS

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>1,9</td>
</tr>
<tr>
<td>5) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>1</td>
</tr>
<tr>
<td>6) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>1</td>
</tr>
<tr>
<td>7) Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>1</td>
</tr>
<tr>
<td>8) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>1,10</td>
</tr>
</tbody>
</table>

4.8.3.1 Potential On-Site Sources of Contamination

LUST Contaminated Soil

As discussed above, contaminated soil and groundwater exist in the area of the maintenance yard located at the north end of campus. The proposed Native Plant Propagation outdoor classroom (refer Figures 8 and 9) would be located directly west of the area of contamination. Additionally, the former Police Academy portable structures to be demolished are located directly east of the contaminated area, and a portion of the proposed water distribution line would be located south of the contaminated area. As stated above, the County concluded that the residual contamination in soil and groundwater in the area of the maintenance yard could pose an unacceptable risk under certain site development activities, including site grading and excavation. Because excavation and
grading activities will be required in the vicinity of the contaminated areas, the proposed project could expose construction workers and future users of the Native Plant Propagation outdoor classroom to contaminated soils. This would be considered a significant impact.

Additionally, the project proposes to install two water extraction wells and associated water distribution piping in the agricultural fields located east of the campus. As discussed above, it is common to find arsenic, lead, and dichlorodiphenyltrichloroethane (DDT) residue in the soil in Santa Clara County from historic farming operations. Installation of the wells and distribution pipelines could expose construction workers to contaminated soils, which would be a significant impact.

Impact HAZ-1: Hazardous materials contamination in the agricultural fields east of campus and in the vicinity of the maintenance yard could pose a risk to construction workers and future users of the Native Plant Propagation outdoor classroom.
* [Significant Impact]

Groundwater

The proposed water extraction wells would be located in the agricultural fields east of the campus. These wells would supply water to the campus. As discussed above, it is common to find arsenic, lead, and DDT residue in the soil in Santa Clara County from historic farming operations. These contaminants could leach into groundwater beneath the soils. Additionally, as discussed in Section 4.9, *Hydrology and Water Quality*, groundwater in the project area contains elevated levels of nitrates.

The project proposes to drill test wells in the vicinity of the proposed wells to confirm that the untreated well water meets federal Safe Drinking Water Act and California Department of Public Health primary and secondary drinking water standards (Title 22). A water treatment system is proposed in a fenced area behind the campus maintenance facility building. The water treatment will ensure that the potable water on the campus meets current state and federal drinking water standards.

Lead-based Paint

The exterior of the existing water tank contains lead-based paint, which could expose workers and others to potential health risks during demolition activities.

Impact HAZ-2: Lead-based paint could present a risk to workers during demolition on the site.
* [Significant Impact]

Proposed Uses

The proposed physical improvements to the campus would not involve the ongoing use of hazardous materials. Materials such as solvents, paints, and fuels could be utilized during project construction. Compliance with applicable federal, state, and local handling, storage, and disposal requirements would ensure that no significant hazards to the public or the environment are created by the routine transport, use, or disposal of these substances.
Other Hazards

Construction of the project would not interfere with emergency responses to the site or the surrounding area. Therefore, the proposed project would not impair implementation of an adopted emergency response or evacuation plan.

The project site is not located within two miles of a public airport or public use airport or within an airport land use plan.

The project site is located in an area determined to be at risk for wildfires. Although the project would introduce additional structures to the site in the form of outdoor classrooms, the project would not increase the overall student capacity of the campus and thus would not expose additional people to the risk of wildfire. All new structures on the campus will meet current fire code requirements. The proposed well installation and water distribution system improvements will improve the fire suppression system on-campus by providing increased water pressure and water supply. For these reasons, the project would not result in significant impacts related to wildfires.

4.8.4 Mitigation and Avoidance Measures

4.8.4.1 Contaminated Soil

The following mitigation measures will be implemented to reduce the potential for construction workers and users of the Native Plant Propagation outdoor classroom to encounter hazardous materials contamination.

MM HAZ-1.1: Prior to initiation of excavation and grading activities in the vicinity of the maintenance yard and in the agricultural fields east of the campus, soil samples shall be taken in the areas of proposed ground disturbance to test for the presence of contaminated soil.

MM HAZ-1.2: In the event contaminated soil is detected during sampling, a site management plan (SMP) shall be developed by a qualified hazardous materials professional to establish management practices for handling contaminated soil or other materials if encountered during excavation and grading activities. The SMP shall be reviewed and approved by the Gavilan Joint Community College District and Santa Clara County Department of Environmental Health prior to commencing construction activities.

MM HAZ-1.3: Each contractor working at the site shall prepare a health and safety plan (HSP) that addresses the safety and health hazards of each phase of site operations and includes the requirements and procedures for employee protection.

MM HAZ-1.4: Excavated soils will be characterized prior to off-site disposal or reuse on-site. Appropriate soil characterization, storage, transportation, and disposal procedures shall be followed. Contaminated soils shall be disposed of at a licensed facility in accordance with all appropriate local, state, and federal
regulations.

MM HAZ-1.5: The use of hazardous materials on the site will be subject to all applicable federal, state, and local regulations.

4.8.4.2 Lead-Based Paint

The following mitigation measures, based on Cal-OSHA and other applicable regulations, are proposed to reduce potential impacts to construction workers and others from lead-based paint to a less than significant level.

MM HAZ-2.1: To identify and quantify materials containing lead-based paint, a survey, including sampling and testing, shall be completed prior to the commencement of demolition activities associated with the existing water tank.

MM HAZ-2.2: During demolition activities, all materials containing lead-based paint shall be removed in accordance with Cal/OSHA Lead in Construction Standard, Title 8, CCR 1532.1, including employee training, employee air monitoring and dust control.

MM HAZ-2.3: Any debris or soil containing lead-based paint or coatings shall be disposed of at landfills that meet acceptance criteria for the waste being disposed.

4.8.5 Conclusion

With implementation of the mitigation measures identified above, the proposed project would result in less than significant hazardous materials impacts.

[Less Than Significant Impact with Mitigation Measures Incorporated in the Project]
4.9 HYDROLOGY AND WATER QUALITY

4.9.1 Existing Setting

4.9.1.1 Flooding

According to the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency (FEMA) for the project area, the campus is located within Zone D, which is defined as areas in which flood hazards are undetermined, but possible. Portions of the agricultural fields east of the campus are located in the 100-year flood hazard Zone AO. Flooding in this zone usually occurs as sheet flow on sloping terrain, and average depths in the vicinity of the site are designated as one foot.7

Inundation Hazards

The Association of Bay Area Governments (ABAG) compiles the dam failure inundation hazard maps submitted to the State Office of Emergency Services by dam owners throughout the Bay Area. The Gilroy dam hazard map shows that the dam failure inundation hazard zone for the Uvas Dam reaches the eastern edge of campus.8

The project site would not be affected by a projected sea level rise from global climate change of up to 55 inches.9 The site is not located near a large body of water, the ocean, or in a landslide hazard zone and, therefore, is not subject to inundation by seiche, tsunami, or mudflow.

4.9.1.2 Stormwater Drainage

The project site slopes from west to east toward Santa Teresa Boulevard. Stormwater drainage on the campus occurs as sheet flow or is conveyed through on-site piping to natural drainage areas located at the north and south ends of campus. These drainages ultimately empty into a drainage swale that runs along Santa Teresa Boulevard.

4.9.1.3 Groundwater

Groundwater monitoring wells installed on the campus have encountered groundwater at depths ranging from two feet to 33 feet bgs. The depth to groundwater can vary seasonally. Groundwater in the vicinity of the site flows east towards the Santa Clara Valley floor.

The project area is located in the Llagas subbasin of the Gilroy-Hollister Groundwater Basin. The Santa Clara Valley Water District created a Nitrate Management Program in October 1991 to investigate and remediate increasing nitrate concentrations in the Llagas subbasin. The results of a study completed in February 1996 suggest that nitrate concentrations are increasing over time and that elevated concentrations of nitrate still exist in the Llagas subbasin. Since 1997, more than 600

wells in south Santa Clara County including the Llagas and Coyote subbasins have been tested for nitrate. More than half exceed the federal safe drinking standard for nitrate.\(^\text{10}\)

4.9.1.4 Water Quality

The water quality of streams, creeks, ponds, and other surface water bodies can be greatly affected by pollution carried in contaminated surface runoff. Pollutants from unidentified sources, known as non-point source pollutants, are washed from streets, construction sites, parking lots, and other exposed surfaces into storm drains. Urban stormwater runoff often contains contaminants such as oil and grease, plant and animal debris (e.g., leaves, dust, animal feces, etc.), pesticides, litter, and heavy metals. In sufficient concentration, these pollutants have been found to adversely affect the aquatic habitats to which they drain.

Nonpoint Source Pollution Program

In 1988 the SWRCB adopted the Nonpoint Source Management Plan in an effort to control nonpoint source pollution in California. In December 1999, the Plan was updated to comply with the requirements of Section 319 of the Clean Water Act and Section 6217 of the Coastal Zone Act Reauthorization Amendment (CZARA) of 1990. The Nonpoint Source Program requires individual permits to control discharge associated with construction activities. The Nonpoint Source Program is administered by the Regional Water Quality Control Board (RWQCB) under the National Pollutant Discharge Elimination System (NPDES) General Permit for Construction Activities. Projects must comply with the requirements of the Nonpoint Source Program if:

- They disturb one acre or more of soil; or
- They disturb less than one acre of soil but are part of a larger development that, in total, disturbs one acre or more of soil.

The NPDES General Permit for Construction Activities requires the developer to submit a Notice of Intent (NOI) to the RWQCB and to develop a Stormwater Pollution Prevention Plan (SWPPP) to control discharge associated with construction activities.

Santa Clara Valley Urban Runoff Pollution Prevention Program

The U.S. Environmental Protection Agency has delegated management of NPDES requirements for municipal urban runoff discharges in California to the SWRCB and the nine RWQCB’s. Locally, each incorporated city and town in Santa Clara County joined with the County of Santa Clara, and the Santa Clara Valley Water District (SCVWD) to form the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) and apply for a regional NPDES Municipal Stormwater Permit. The SCVURPPP’s Municipal Regional Stormwater NPDES Permit (MRP) includes provisions requiring regulation of stormwater discharges associated with new development and development of an area-wide watershed management strategy.

\(^{10}\)California Department of Water Resources website: http://www.water.ca.gov/groundwater/bulletin118/central_coast.cfm
Under the NPDES MRP, projects that create, add, or replace 10,000 square feet or more of impervious surface area are required to control post-development stormwater through source control and treatment control Best Management Practices (BMPs). As of December 1, 2011, the MRP also requires uncovered parking lots that create or replace greater than 5,000 square feet of impervious surface to design and install Low Impact Development (LID) controls to treat post-construction stormwater runoff from the site. Examples of LID controls include rainwater harvesting/re-use, infiltration, and biotreatment. For the proposed project, the new/replaced impervious surfaces on the project site would be less than 50 percent of the pre-project impervious surface area. As a result, stormwater treatment for only the new/replaced impervious area will be required.

Drinking Water Standards

Suppliers of domestic drinking water are subject to federal regulations under the Safe Drinking Water Act (42 U.S.C. 300f et seq.) as well as California Department of Public Health regulations under the California Safe Drinking Water Plan Act (Health and Safety Code Sections 116270-116750). These regulations address primary drinking water standards, or maximum contaminant levels (MCL) for inorganic and organic chemicals and radioactivity. Secondary drinking water standards have also been established to address aesthetic factors, such as taste, smell and clarity. The State of California requires public water systems to analyze their drinking water for contaminants on a regular basis.

Existing Water Distribution System

The existing water distribution system for the campus is comprised of a series of pipelines that connect a well located in the agricultural fields east of campus to a 1,000,000-gallon steel water tank reservoir located 1,000 feet to the west in the foothills above campus. The distribution system is composed primarily of an 8-inch diameter asbestos-cement pipe (ACP) and provides water distribution for fire suppression needs, as well as potable and irrigation uses.

Due to the condition and age of the equipment, the well appears to have existed as an agricultural well prior to being purchased by Gavilan Community College as the water source for the campus in 1966. Over time, production from the well has decreased from an estimated 500 gallons per minute (gpm) to current levels of 250 gpm.

A water quality test was taken for the well in June 2008. The test showed a nitrate level of 30 mg/L, which is approaching the State Drinking Water Limits of 45 mg/L. The results indicate that the soil surrounding the well has been heavily fertilized for the past 50 years. As a result, nitrate levels are likely to rise over time. The results also indicate the sanitary seal on the existing well is likely either shallow or failing, since a proper sanitary seal should prevent shallow contaminated water from entering the well.

Currently, Gavilan Community College treats the water from the well with a chlorination dosing system prior to entering the piping system used for domestic consumption. Chlorination is not an approved method for nitrate removal, nor is it a way to reduce nitrate levels. Additionally, State health requirements require the treatment system to implement additional monitoring of nitrate levels when the recorded amount exceeds 50 percent of the State Drinking Water Limits (22.5 mg/L).
HYDROLOGY AND WATER QUALITY

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>2) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>3) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on-or-off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>4) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on-or-off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>5) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>6) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1</td>
</tr>
<tr>
<td>7) Place housing within a 100-year flood hazard area as mapped on a Federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>1,11</td>
</tr>
<tr>
<td>Would the project:</td>
<td>Potentially Significant Impact</td>
<td>Less Than Significant With Mitigation Incorporated</td>
<td>Less Than Significant Impact</td>
<td>No Impact</td>
<td>Beneficial Impact</td>
<td>Information Source(s)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>------------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>8) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>1,11</td>
</tr>
<tr>
<td>9) Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>1,12</td>
</tr>
<tr>
<td>10) Be subject to inundation by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>1</td>
</tr>
</tbody>
</table>

4.9.3.1 Flooding Impacts

The campus is not located within a 100-year flood hazard zone. Although portions of the agricultural fields where the proposed wells and water distribution system will be installed are located within a 100-year flood hazard zone, implementation of the proposed project will not result in people or structures being exposed to a significant flood risk. The project would not place housing within a 100-year flood hazard area, nor would it place structures in a 100-year flood hazard area that would impede or redirect flows. The project site is not subject to inundation by seiche, tsunami, or mud flow.

4.9.3.2 Storm Drainage System Impacts

The proposed project would construct new structures on site and would extend a paved parking area and construct outdoor classrooms, thus resulting in an increase in the amount of impervious surfaces on the site. The project would replace more than 5,000 square feet or more of impervious surface area in an uncovered parking lot, and more than 10,000 square feet overall, and therefore would be required to control post-development stormwater through source control and treatment control Best Management Practices (BMPs) in compliance with the Municipal Regional Stormwater NPDES Permit (MRP).

The storm drainage system on the campus has sufficient capacity to convey runoff from the site. Runoff from the project site would not exceed the capacity of the drainage system, or contribute significantly to downstream flooding. The project would not substantially alter the existing drainage pattern of the site or area in a manner which would result in substantial erosion, siltation, or flooding on- or off-site. The project would not substantially increase the rate or amount of surface runoff in a manner which would result in flooding on-or off-site, nor would it create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff.
4.9.3.3 **Groundwater**

Water supply to the campus would be provided by implementing improvements to the existing water supply well and installing an additional well directly to the east to provide supplemental water supply (Option A). Alternately, the project may install two new wells adjacent to Mesa Road in the agricultural fields east of the project site, while decommissioning the existing well (Option B). However, due to inability to contact and obtain permission from the property owners, Option B may be infeasible.

In each option, the wells would be located in areas where the known geomorphology should support water production greater than 500 gpm per well head. A test well will be drilled in the vicinity of the proposed wells to provide a current, accurate assessment of the geomorphology. The testing will ensure that sufficient groundwater is available to provide the desired pumping rates on an ongoing basis, without lowering the groundwater table or contributing to drawdown of other nearby wells. The project would not increase the student capacity of the overall campus, and would not increase water demand on the site; the new wells are primarily proposed to ensure sufficient fire flow and storage tank recharge rates. The wells would be used alternately, only to be combined during times of high water demand on-campus. For these reasons, the project would not substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level.

4.9.3.4 **Water Quality**

Proposed Wells

As described above, the groundwater basin in the project area contains elevated levels of nitrates. The project proposes to drill test wells in the vicinity of the proposed wells to confirm that the untreated well water meets federal Safe Drinking Water Act and California Department of Public Health primary and secondary drinking water standards (Title 22). A water treatment system is proposed in a fenced area behind the campus maintenance facility building. The water treatment will ensure that the potable water on the campus meets current Title 22 drinking water standards.

Construction Activities

Construction of the project will involve demolition, excavation and grading activities at the project site. Construction activities would generate dust, sediment, litter, oil, paint, and other pollutants that would temporarily contaminate runoff from the site and could substantially degrade water quality.

Impact HYD-1: Construction activities could temporarily contaminate stormwater runoff from the site. **[Significant Impact]**

Post-Construction

The proposed project will add or replace more than 10,000 square feet of impervious surfaces, so it must conform to the requirements of the Municipal Regional Stormwater NPDES permit. In order to meet the NPDES requirements, the project proposes to direct runoff from new or replaced impervious surfaces to bio-retention areas.
The proposed treatment facilities will have sufficient capacity to treat the stormwater runoff entering the storm drainage system on-campus. In addition, the project will be required to maintain all post-construction treatment control measures throughout the life of the project.

With implementation of the project’s stormwater control measures, the project will not violate any adopted water quality standards or waste discharge requirements.

4.9.4 Mitigation and Avoidance Measures

MM HYD-1: The following mitigation measures, based on RWQCB BMPs, will reduce construction-related water quality impacts. All mitigation will be implemented prior to the start of earthmoving activities on-site and will continue until the construction is complete.

- Burlap bags filled with drain rock shall be installed around storm drains to route sediment and other debris away from the drains.
- Earthmoving or other dust-producing activities shall be suspended during periods of high winds.
- All exposed or disturbed soil surfaces shall be watered at least twice daily to control dust as necessary.
- Stockpiles of soil or other materials that can be blown by the wind shall be watered or covered.
- All trucks hauling soil, sand, and other loose materials shall be required to cover all trucks or maintain at least two feet of freeboard.
- All paved access roads, parking areas, staging areas and residential streets adjacent to the construction sites shall be swept daily (with water sweepers).
- Vegetation in disturbed areas shall be replanted as quickly as possible.
- All unpaved entrances to the site shall be filled with rock to knock mud from truck tires prior to entering City streets. A tire wash system may also be employed at the request of the City.
- A Storm Water Permit will be administered by the RWQCB. Prior to construction grading for the proposed land uses, the project proponent will file a “Notice of Intent” (NOI) to comply with the General Permit and prepare a SWPPP which addresses measures that would be included in the project to minimize and control construction and post-construction runoff. Measures will include, but are not limited to, the aforementioned RWQCB mitigation.
- The Gavilan Joint Community College District will prepare a SWPPP prior to start of construction on the project site. The certified SWPPP will be posted at the project site and will be updated to reflect current site conditions.
• When construction is complete, a NOT for the General Permit for Construction will be filed with the RWQCB. The NOT will document that all elements of the SWPPP have been executed, construction materials and waste have been properly disposed of, and a post-construction storm water management plan is in place as described in the SWPPP for the site.

4.9.4 Conclusion

With implementation of BMPs included in the project, the project will have a less than significant impact on stormwater quality. The project will not deplete the groundwater supply, increase stormwater runoff, place housing within a 100-year flood hazard area, or expose people or structures to flood hazards. [Less Than Significant Impact]
4.10 LAND USE

4.10.1 Existing Setting

The 150-acre Gavilan campus is located in an unincorporated area of Santa Clara County adjacent to the Gilroy city limits. The site is designated Educational Facility in the Gilroy General Plan, and zoned as A-20Ac-d1-sr and A-20Ac-sr by Santa Clara County.

The Educational Facility designation is applied to existing and future school facilities, including both public schools (owned and operated by the Gilroy Unified School District and Gavilan College) and private schools (except where the school is part of another facility, such as a church).

The zoning designations of A-20Ac-d1-sr and A-20Ac-sr are agricultural zoning districts with minimum lot areas of 20 acres. The purpose of the “-sr” Scenic Roads combining district is to protect the visual character of scenic roads in Santa Clara County through special development and sign regulations. The “-sr” combining district applies to all designated scenic roads in unincorporated Santa Clara County. The “-d1” combining district is intended to conserve the scenic attributes of those hillside lands most immediately visible from the valley floor. It is intended to minimize the visual impacts of structures and grading on the natural topography and landscape, using a combination of supplemental development standards, design guidelines, design review, and use of process incentives for smaller and less visible projects.

The Gavilan campus is bounded by foothills of the Santa Cruz Mountains to the west and south, residential uses to the north, and agricultural uses across Santa Teresa Boulevard to the east.

As described in Section 4.4, Biological Resources, a Habitat Conservation Plan (HCP) that would cover South Santa Clara Valley is being prepared and has not yet been adopted. Presently, the campus would not be covered by the HCP because Gavilan is not a local partner.

4.10.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
</table>

Would the project:

1) Physically divide an established community?
 - No Impact, Beneficial Impact

2) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?
 - No Impact, Beneficial Impact

3) Conflict with any applicable habitat conservation plan or natural community conservation plan?
 - No Impact, Beneficial Impact

1
1,2
4.10.3.1 Land Use Conflicts

Land use conflicts can arise from two basic causes: 1) a new development or land use may cause impacts to persons or the physical environment in the vicinity of the project site or elsewhere; or 2) conditions on or near the project site may have impacts on the persons or development introduced onto the site by the new project. Both of these circumstances are aspects of land use compatibility. Potential incompatibility may arise from placing a particular development or land use at an inappropriate location, or from some aspect of the project’s design or scope. Depending on the nature of the impacts and their severity, land use compatibility conflicts can range from minor irritation and nuisance to potentially significant effects on human health and safety.

The project site is an existing community college campus bordered by residential and agricultural uses. Future operation of the project will be similar to existing conditions, and does not represent any land use compatibility impact. Project construction could cause temporary noise and air quality impacts to the residential uses north of the site, as discussed further in Section 4.3, Air Quality and Section 4.12, Noise of this Initial Study. Mitigation and avoidance measures are included in the project to reduce these impacts to a less than significant level. The nature of the land use on the site would not change with the proposed project, and the project would not result in significant impacts to uses in the area. The project would not divide an established community.

4.10.2.2 General Plan and Zoning

The proposed project site has a General Plan land use designation of Educational Facility. The existing land use on the site would not change, and would be consistent with the General Plan land use designation.

The campus has zoning designations of A-20Ac-d1-sr and A-20Ac-sr, which are agricultural zoning districts with minimum lot areas of 20 acres. The existing land use on the site would not change. The project would be required to conform to the regulations and provisions set forth in the County’s Zoning Ordinance for development within the A-20Ac-d1-sr and A-20Ac-sr districts.

4.10.2.3 Habitat Conservation Plan

As described previously, the campus would not be covered by the proposed HCP because Gavilan Community College is not a local partner. The project as proposed would not impede or conflict with the proposed HCP.

4.10.4 Conclusion

The proposed project is consistent with the General Plan and Zoning Ordinance; the project would not physically divide an established community, conflict with applicable plans or policies, or result in other significant land use impacts. [Less Than Significant Impact]
4.11 MINERAL RESOURCES

4.11.1 Existing Setting

Extractive resources known to exist in and near the Santa Clara Valley include cement, sand, gravel, crushed rock, clay, limestone, and mercury. The project site does not contain any known or designated mineral resources.

4.11.2 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>MINERAL RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
</tr>
<tr>
<td>1) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
</tr>
<tr>
<td>2) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
</tr>
</tbody>
</table>

4.11.2.1 Mineral Resources Impacts

The proposed project site does not contain any known or designated mineral resources.

4.11.3 Conclusion

The project would not result in a significant impact from the loss of availability of a known mineral resource. [No Impact]
4.12 NOISE

4.12.1 Existing Setting

4.12.1.1 Background Information

Acceptable levels of noise vary from land use to land use. In any one location, the noise level will vary over time, from the lowest background or ambient noise level to temporary increases caused by traffic or other sources. State and federal standards have been established as guidelines for determining the compatibility of a particular use with its noise environment.

There are several methods of characterizing sound. The most common in California is the A-weighted sound level or dBA. This scale gives greater weight to the frequencies of sound to which the human ear is most sensitive. Because sound levels can vary markedly over a short period of time, a method for describing either the average character of the sound or the statistical behavior of the variations must be utilized. Most commonly, environmental sounds are described in terms of an average level that has the same acoustical energy as the summation of all the time-varying events. This energy-equivalent sound/noise descriptor is called L_{eq}. The most common averaging period is hourly, but L_{eq} can describe any series of noise events of arbitrary duration.

Although the A-weighted noise level may adequately indicate the level of environmental noise at any instant in time, community noise levels vary continuously. Most environmental noise includes a conglomeration of noise from distant sources which create a relatively steady background noise in which no particular source is identifiable. Sound level meters can accurately measure environmental noise levels to within plus or minus one dBA. Since the sensitivity to noise increases during the evening hours, 24-hour descriptors have been developed that incorporate artificial noise penalties added to quiet-time noise events. The Day/Night Average Sound Level, L_{dn}, is the average A-weighted noise level during a 24-hour day, obtained after the addition of 10 dB to noise levels measured in the nighttime between 10:00 p.m. and 7:00 a.m.

4.12.1.2 Santa Clara County Noise Ordinance

The Santa Clara County noise ordinance limits construction hours to between 7:00 AM and 7:00 PM on weekdays and Saturdays. Additionally, where technically and economically feasible, noise levels at residential properties adjacent to construction areas shall not exceed 75 dBA during construction activities.

4.12.1.4 Existing Noise Conditions

The project site is located in the unincorporated area of Santa Clara County adjacent to the Gilroy city limits. Residential and agricultural uses are located north and east of the site, respectively. The major noise source in the project area is traffic on Santa Teresa Boulevard. The project site is not located within an airport land use plan or in the vicinity of an airport.

11 The sound pressure level in decibels as measured on a sound level meter using the A-weighting filter network. All sound levels in this discussion are A-weighted, unless otherwise stated.
4.12.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>NOISE</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project result in:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1,2</td>
</tr>
<tr>
<td>2) Exposure of persons to, or generation of, excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1,2</td>
</tr>
<tr>
<td>3) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1,2</td>
</tr>
<tr>
<td>4) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>1,2</td>
</tr>
<tr>
<td>5) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>1,2</td>
</tr>
<tr>
<td>6) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>1,2</td>
</tr>
</tbody>
</table>

4.12.2.1 Noise Impacts

The proposed project would not introduce new land uses on the project site, nor would it result in new vehicle trips. As a result, the project would not introduce a new source of ongoing noise in the project area.

4.12.2.2 Construction Noise Impacts

The demolition of existing structures and construction of the project would generate noise and would temporarily increase noise levels at nearby residential uses. The significance of noise impacts during construction and demolition depend on the noise generated by various pieces of construction equipment, the timing and duration of noise generating activities, and the distance between
Construction noise generates considerable amounts of noise, especially during the construction of project infrastructure when heavy equipment is used. Typical hourly average construction generated noise levels are about 75 to 80 dBA measured at a distance of 100 feet from the center of the site during busy construction periods (e.g., earth moving equipment, impact tools, etc.). Construction generated noise levels drop off at a rate of about six dBA per doubling of distance between the source and receptor.

Construction noise impacts are more significant when construction occurs during noise-sensitive times of the day (early morning, evening, or nighttime hours), when the construction occurs in areas immediately adjoining noise sensitive land uses, or when construction lasts extended periods of time. Construction activities may result in annoyances to existing residential uses adjacent to the project site.

Although most construction work would occur in the interior of the campus, the demolition of the former Police Academy portables would occur roughly 100 feet from the nearest residences north of the site. The project would be required to comply with the provisions set forth in the Santa Clara County Municipal Code, as described above. Compliance with the Municipal code would ensure that noise from construction activities would be less than significant.

The project will also implement the following avoidance measures to further reduce construction noise impacts.

Avoidance Measures:

AM NOISE-1.1: Although noise impacts from construction would be less than significant, the following avoidance measures are included in the project to further reduce noise impacts on neighboring properties:

- Equip all internal combustion engine driven equipment with intake and exhaust mufflers that are in good condition and appropriate for the equipment.
- Unnecessary idling of internal combustion engines should be strictly prohibited.
- Locate stationary noise generating equipment such as air compressors or portable power generators as far as possible from sensitive receptors. Construct temporary noise barriers to screen stationary noise generating equipment when located near adjoining sensitive land uses. Temporary noise barriers could reduce construction noise levels by five (5) dBA.
- Utilize “quiet” air compressors and other stationary noise sources where technology exists.
• Route all construction traffic to and from the project site via designated truck routes where possible. Prohibit construction related heavy truck traffic adjacent to the residential areas where feasible.

• Control noise from construction workers’ radios to a point where they are not audible at existing residences bordering the project site.

4.12.3 Conclusion

The project would not result in significant noise impacts. [Less Than Significant Impact]
4.13 POPULATION AND HOUSING

4.13.1 Existing Setting

The Association of Bay Area Governments’ (ABAG) Building Momentum: Projections and Priorities 2009 estimated that in 2010, the unincorporated areas of Santa Clara County would have a population of approximately 103,100 residents in 31,600 households, and the City of Gilroy would have a population of approximately 49,800 residents in 14,330 households. For 2035, the projected population for the unincorporated areas is 122,400 residents in 37,960 households, and the projected population for Gilroy is 69,600 residents in 19,970 households.12

4.13.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>POPULATION AND HOUSING</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐ ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>☐ ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐ ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

4.13.3.1 Population and Housing Impacts

The proposed project would not result in the displacement of substantial numbers of people or housing, as no residential uses are currently on the site. The proposed project includes modifications to an existing community college campus and would not induce substantial population growth in the project area. The project, therefore, would result in a less than significant population and housing impact.

4.13.4 Conclusion

Implementation of the proposed project will have a less than significant impact on population and housing. [Less Than Significant Impact]

4.14 PUBLIC SERVICES

4.14.1 Existing Setting

Fire Protection Services

Fire protection in the project area is provided by the Gilroy Fire Department, which serves the City of Gilroy, and the California Department of Forestry and Fire Protection (Cal Fire), which serves the unincorporated areas of Santa Clara County. The nearest Gilroy Fire Department station is located at 7070 Chestnut Street, roughly two miles north of the site. The nearest Cal Fire station is located at 10810 No Name Uno Road in Gilroy, roughly eight miles north of the site.

Police Protection Services

Police protection services in the project area are provided by the City of Gilroy Police Department and the Santa Clara County Sheriff’s Department. The Gilroy Police Department headquarters are located at 7301 Hanna Street, roughly 2.4 miles north of the site. The South County Substation of the Santa Clara County Sheriff’s Department is located in San Martin, roughly 10 miles north of the site.

Schools

Gavilan Community College was established in 1919 as San Benito County Junior College. It operated under this name until 1963, when a new community college district was drawn that included both San Benito and southern Santa Clara Counties. Successful passage of a local bond in 1966 provided the needed funds to construct the Gavilan Gilroy campus. A second facilities improvement bond was approved by voters in March 2004 to renovate the existing facilities, and acquire property for future campus sites in Coyote Valley and San Benito County.

The Gavilan Joint Community College District serves residents of the Gilroy Unified, Morgan Hill Unified, Aromas-San Juan Unified, and San Benito High School districts. The Gavilan District is comprised of approximately 2,700 square miles in southern Santa Clara County and most of San Benito County. The Gilroy Campus is master-planned to accommodate an enrollment of 5,000 students.

The nearest schools to the project site are Las Animas Elementary School, located at 6550 Cimino Street (1.7 miles to the north), Ascension Solorsano Middle School, located at 7121 Grenache Way (2.4 miles to the northwest), and Gilroy High School, located at 750 West 10th Street (1.9 miles to the north).

Parks

The nearest park to the project site is Christmas Hill Park, located east of Miller Avenue near Uvas Parkway, roughly two miles northwest of the site.
4.14.3 Environmental Checklist and Discussion of Impacts

PUBLIC SERVICES

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fire Protection?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Police Protection?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Other Public Facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

4.14.3.1 Public Services Impacts

The proposed project is the implementation of various physical improvements on the Gavilan campus. The project would not change the land use on the site, nor would it increase the student capacity of the overall campus and, therefore, would not increase the need for fire and police services. The proposed project would be designed and constructed in conformance with current codes to ensure appropriate safety features. The project would not increase the utilization of public parks in the project area, nor would it adversely impact school facilities or services.

4.14.4 Conclusion

The project would not result in adverse physical impacts associated with a need for new public safety, recreational or educational facilities in order to maintain acceptable levels of service. **[Less Than Significant Impact]**
4.15 RECREATION

4.15.1 Existing Setting

The nearest park to the project site is Christmas Hill Park, located east of Miller Avenue near Uvas Parkway, roughly two miles northwest of the site. The 51-acre park consists of natural wilderness with trails, picnic/barbecue areas, horseshoe pits, jogging and hiking paths, children's play areas, softball/baseball fields, and open grass play areas.

4.15.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>RECREATION</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project: 1) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

4.15.2.1 Recreation Impacts

The proposed project is the implementation of physical improvements on the Gavilan campus. The project would not change the land use on the site, nor would it increase the student capacity of the overall campus, and therefore would not result in adverse physical effects to parks and/or recreational facilities in the project area.

4.15.3 Conclusion

The project would not result in a significant adverse impact to recreation facilities within the City of Mountain View. [No Impact]
4.16 TRANSPORTATION

4.16.1 Existing Setting

4.16.1.1 Existing Roadway Network

Access to the project site is provided via Santa Teresa Boulevard, a two-lane roadway which runs north-south and borders the eastern edge of the campus. Santa Teresa Boulevard terminates at Castro Valley Road, a two-lane roadway which runs east-west and borders the southern edge of the campus. Castro Valley Road provides a connection to northbound US 101, which is a four-lane highway in the project vicinity.

4.16.1.1 Pedestrian, Bicycle, and Transit Facilities

No sidewalks are located on the roadways adjacent to the project site. Paved pathways are located throughout the campus to provide internal pedestrian circulation.

Although no bicycle facilities are located in the project vicinity, the City of Gilroy Bicycle/Pedestrian Transportation Plan proposes a future bicycle path that would run along the east side of Santa Teresa Boulevard from downtown Gilroy to the campus.

Caltrain provides train service between Gilroy and San Francisco. The Gilroy Caltrain Station is located on the east side of Monterey Road, south of 7th Street, roughly two miles north of the project site. Bus service in the project area is provided by the Santa Clara Valley Transportation Authority (VTA). The VTA operates Route 18, which provides bus service between the Gilroy Caltrain Station and the campus.

4.16.1.4 Site Access and On-Site Circulation

Access to the site from Santa Teresa Boulevard is provided via entrance roadways at the north and south ends of campus. The roadways connect to Campus Loop Road, which extends around the perimeter of the main campus area and provides access to campus parking lots.
4.16.2 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>TRANSPORTATION/TRAFFIC</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>☐ ☐ ☒ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>☐ ☐ ☒ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>☐ ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible land uses (e.g., farm equipment)?</td>
<td>☐ ☐ ☒ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5) Result in inadequate emergency access?</td>
<td>☐ ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td>☐ ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
4.16.2.1 Project Traffic Impacts

The project proposes to implement a series of physical improvements on the project site, and would not increase the student capacity of the overall campus. The project would not result in an increase in vehicle trips and, therefore, would not affect the operation of local roadways and intersections.

The project may result in a temporary increase in vehicle trips during construction activities as workers travel to and from the site. The number of construction vehicles would be low due to the size and nature of the project. All construction staging would occur on the campus and would not affect circulation on adjacent roadways. Construction-related traffic would be of short duration and would have a less than significant impact on roadways and intersections.

The project would not result in a change in air traffic patterns, result in inadequate emergency access, or conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.

Vehicle Circulation and Parking

The proposed GECA Consolidation would extend into the northern portion of Parking Lot C. To compensate for the lost capacity, the parking lot would be expanded south. The project would also install a small connecting roadway between the expanded Parking Lot C and the southern end of Campus Loop Road. As a result, Parking Lot C will have access points from both the northern and southern portions of Campus Loop Road, preventing the need for vehicles entering and exiting the southern end of campus to drive all the way around to the northern end of campus to access the lot, thus improving vehicle circulation on-campus. The proposed connecting roadway is designed to provide adequate site lines in each direction, and would not substantially increase hazards due to a design feature such as a sharp curve or dangerous intersection.

Pedestrian Circulation

The project proposes to install paved pathways to provide access to the proposed outdoor classrooms from various locations on-campus. The pathways would be Americans with Disabilities Act (ADA)-compliant, and would improve pedestrian circulation throughout the campus.

4.16.4 Conclusion

Implementation of the proposed project would have less than significant transportation impacts. [Less Than Significant Impact]
4.17 UTILITIES AND SERVICE SYSTEMS

4.17.1 Existing Setting

4.17.1.1 Water Services

The existing water distribution system for the campus is comprised of a series of pipelines that connect a 1,000,000-gallon steel water tank reservoir located in the foothills west of campus to a well located 1,000-feet to the east within agricultural fields. The distribution system is composed primarily of an 8-inch diameter asbestos-cement pipe (ACP) and provides water distribution for fire suppression needs as well as potable and irrigation uses.

4.17.1.2 Wastewater Services

The campus connects to the City of Gilroy sanitary sewer system. The City sewer collection system consists of approximately 110 miles of six-inch through 33-inch diameter sewers. The “backbone” of the system consists of the trunk sewers, generally 10-inches in diameter and larger, that convey the collected wastewater flows to the Wastewater Treatment Plant (WWTP). The WWTP, operated by the South County Regional Wastewater Authority (SCRWA), treats the collected wastewater from the City of Gilroy and the City of Morgan Hill.

4.17.1.3 Storm Drainage

The project site slopes from west to east toward Santa Teresa Boulevard. Stormwater drainage on the campus occurs as sheet flow or is conveyed through on-site piping to natural drainage areas located at the north and south ends of campus. These drainages ultimately empty into a drainage swale that runs along Santa Teresa Boulevard.

4.17.1.4 Solid Waste

Solid waste and recycling services in south Santa Clara County is provided under exclusive contract with Recology South Valley. Recology South Valley has contracted through 2017 with the Salinas Valley Solid Waste Authority to dispose of municipal solid waste at Johnson Canyon Sanitary Landfill. Johnson Canyon Sanitary Landfill is anticipated to reach capacity in 2043.13

4.17.1.4 Electricity and Natural Gas

Electricity and natural gas services to the site are provided by Pacific Gas & Electric (PG&E).

4.17.3 Environmental Checklist and Discussion of Impacts

<table>
<thead>
<tr>
<th>UTILITIES AND SERVICE SYSTEMS</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
</table>
| Would the project:
1) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |
| 2) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |
| 3) Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |
| 4) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |
| 5) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |
| 6) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |
| 7) Comply with federal, state, and local statutes and regulations related to solid waste? | ☐ | ☐ | ☒ | ☐ | ☐ | 1 |

4.17.3.1 Water Services Impacts

The project proposes to implement a series of improvements to the water distribution system serving the campus. The existing 1,000,000-gallon water tank would be replaced with two 669,000-gallon tanks. These new tanks would be fed by one of two water supply options: Option A would implement improvements to the existing water supply well and install an additional well directly to the east to provide supplemental water supply; and Option B would install two new wells adjacent to Mesa Road in the agricultural fields east of the project site, while decommissioning the existing well.
In each option, two wells would only be run simultaneously after a fire event; in normal operation the wells would alternate in service. Both options would be capable of delivering adequate water supply to re-fill the water tanks within the National Fire Protection Association requirement of eight hours.

The project would also install new distribution piping throughout the campus to provide separate irrigation/fire and domestic loops, meeting current fire codes (see Figure 5). The pipelines would vary between 8-inches and 12-inches in diameter. A small treatment facility would be installed within a fenced area, in the campus maintenance area at the north end of the site, to provide water treatment, as needed.

The physical improvements proposed by the project would not increase the student capacity of the overall campus, and would not increase water demand on the site. With implementation of the proposed improvements, adequate water supply would be available to serve the site.

4.17.3.2 Wastewater Services Impacts

As described above, the project site connects to the City of Gilroy sanitary sewer system. The project would not increase the student capacity of the overall campus, and thus would not increase demand on the sanitary sewer system.

4.17.3.3 Storm Drainage Impacts

As discussed in Section 4.9, Hydrology and Water Quality of this Initial Study, the project would result in an increase in the amount of impervious surfaces on the site. The project would replace more than 5,000 square feet or more of impervious surface area in an uncovered parking lot, and more than 10,000 square feet overall, and therefore would be required to control post-development stormwater through source control and treatment control Best Management Practices (BMPs) in compliance with the Municipal Regional Stormwater NPDES Permit (MRP). The storm drainage system on the campus has sufficient capacity to convey runoff from the site.

4.17.3.4 Solid Waste Impacts

The proposed project would not change the existing use on the site, nor would it increase the student capacity of the overall campus. The project, therefore, would not result in an ongoing increase in solid waste generation.

The project would generate some additional solid waste during demolition and construction activities, but would not exceed landfill capacities and would comply with relevant statutes and regulations related to solid waste.

4.17.4 Conclusion

The proposed project would not result in significant impacts to utilities and service systems. [Less Than Significant Impact]
MANDATORY FINDINGS OF SIGNIFICANCE

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
<th>Beneficial Impact</th>
<th>Information Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-13</td>
</tr>
<tr>
<td>2) Does the project have impacts that are individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-13</td>
</tr>
<tr>
<td>3) Does the project have the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-13</td>
</tr>
<tr>
<td>4) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-13</td>
</tr>
</tbody>
</table>

4.18.1.1

Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

The project could result in impacts to special-status species, riparian habitat, and federally protected wetlands. The project could also result in impacts to buried archaeological resources, should they be discovered on site. The project could result in hazardous materials impacts related to asbestos, lead-based paint, and soil and groundwater contamination. The project could also result in construction air quality, water quality, and noise impacts. With the implementation of the mitigation and avoidance measures included in the project and described in the specific sections (refer to Section 4, Environmental Setting, Checklist, and Discussion of Impacts) of this Initial Study, the proposed project would not result in significant environmental impacts.
4.18.1.2 Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

The effects of past projects are reflected in the existing conditions on the site and in the surrounding area. A number of projects have been recently approved or are reasonably foreseeable near the project site, including a project that would extend Santa Teresa Boulevard from Castro Valley Boulevard to a new U.S. 101/S.R. 25 interchange located roughly 0.5 miles south of the site, and a project that would expand operations at the Freeman Quarry, located roughly 1.2 miles south of the site. Additional projects that are foreseeable in the surrounding area consist mainly of development of residential uses north of the site. While these individual projects may result in significant impacts in particular issue areas, it is assumed that the projects will comply with existing regulations and statutes, and will incorporate mitigation and avoidance measures to reduce potential impacts to a less than significant level, if necessary. For example, all projects are required to incorporate best management practices and comply with local and regional regulations to reduce impacts to water quality to the maximum extent feasible.

Biological Resources: Historically, cumulative development has resulted in a substantial loss of valuable ecological habitats in the greater project area, including wetlands, oak woodlands, riparian and aquatic. The loss of these and other habitats has directly impacted many plant and animal species, resulting in direct threats to the continued existence of a number of species. Another related effect of cumulative development has been the creation of barriers and hazards to the migration of animals along various wildlife corridors.

All of these factors led to the enactment of various statutes, regulations, and policies whose goals are to halt, and in many cases reverse, this trend. These include the federal Endangered Species Act, the California Endangered Species Act, the Clean Water Act, the Porter-Cologne Water Quality Control Act, the National Environmental Protection Act (NEPA), and CEQA. These statutes require private and public projects to include measures that avoid and/or fully mitigate for impacts to sensitive habitats and the special-status species that are found within them. The proposed Santa Clara Valley HCP/NCCP is an effort to address this issue on a large-scale, as opposed to a piecemeal, basis. Although the proposed project is not a “covered activity”, the project could participate in the HCP/NCCP mitigation program as a “participating special entity.”

In the case of the proposed project, while it would result in impacts to various habitats and special status animal species, it would not contribute to cumulative impacts because mitigation and avoidance measures are included in the project. Specifically, all loss of sensitive habitats resulting from the proposed improvements will be fully mitigated by the creation of replacement habitats at a minimum 1:1 ratio (refer to Section 4.4, Biological Resources).

Similarly, the proposed extension of Santa Teresa Boulevard and the expansion of Freeman Quarry, if approved, would not contribute to the cumulative loss of sensitive habitats because mitigation and avoidance measures will be required by regulatory agencies as conditions of approval. Additional approved and pending developments in the project area consist mainly of residential uses to be constructed on agricultural properties. These projects would be unlikely to result in significant impacts to biological resources. Regardless, these individual projects would be required to incorporate mitigation measures to reduce impacts to special-status species and habitats to a less than
significant level, and would be required to comply with state and federal laws and regulations for the protection of special-status species.

Construction Impacts: With the implementation of mitigation and avoidance measures, the proposed project would not result in significant impacts from the effects of project construction on air quality, noise, or water quality. The construction of the anticipated or pending projects in the area would result in short-term impacts at various locations throughout the area. The cumulative project sites, however, are scattered throughout the area, their construction schedules are different, and their construction is likely to occur over the next several years. In addition, projects would generally be required to implement standard measures and controls to further reduce construction impacts. Given these factors, the construction impacts associated with the pending projects would not result in a significant cumulative impact.

Hazardous Materials Impacts: With the implementation of mitigation and avoidance measures, the proposed project would not result in significant impacts from the potential presence of asbestos containing materials, lead-based paint, and contaminated soil and groundwater on the site. Impacts would be local to the site, and would be unaffected by and/or would not affect pending development in the project area. Given these factors, the project would not result in or substantially contribute to cumulative hazardous materials impacts.

Hydrology Impacts: Although the project would implement improvements to the water distribution system for the campus, including the installation of new groundwater extraction wells, the project would not result in an increased demand for water. Test wells will be drilled in the vicinity of the proposed wells to ensure that drawdown on nearby wells would not occur as a result of the project. Given these factors, the project would not result in or substantially contribute to cumulative hydrology impacts.

4.18.1.3 Does the project have the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals?

The project will be designed in a manner that reduces both short- and long-term environmental impacts to the greatest extent feasible. Mitigation measures included in the project would not achieve short-term environmental goals to the disadvantage of long-term environmental goals.

4.18.1.4 Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

With the implementation of the mitigation and avoidance measures included in the project and described in the specific sections of this report (refer to Section 4. Environmental Setting, Checklist, and Discussion of Impacts) of this Initial Study, the proposed project would not result in substantial adverse effects on human beings.

4.18.2 Conclusion

The project could result in temporary air quality, noise, and water quality impacts during construction. The project could result in hazardous materials impacts, as well as impacts to biological and cultural resources, should they be discovered on site. The project could also result in
post-construction hydrology and water quality impacts. With the implementation of the mitigation and avoidance measures included in the project and described in the specific sections of this Initial Study (refer to Section 4. Environmental Setting, Checklist, and Discussion of Impacts), the proposed project would not result in significant environmental impacts.
Checklist Sources:

1. CEQA Guidelines - Environmental Thresholds (Professional judgment and expertise and review of project plans).
9. County of Santa Clara Department of Environmental Health. *Fuel Leak Site Case Closure Gavilan College, 5055 Santa Teresa Blvd., Gilroy, CA; Case No. 14-352, SCVWDID No. 11S3E18R01f*. July 5, 2012.
12. ABAG. *Gilroy Dam Failure Inundation Hazard Map*. 1995. http://www.abag.ca.gov/cgi-bin/pickdamx.pl
SECTION 5.0 REFERENCES

Bay Area Air Quality Management District. Air Quality Standards and Attainment Status. Available at: <http://hank.baaqmd.gov/pln/air_quality/ambient_air_quality.htm>

County of Santa Clara Department of Environmental Health. Fuel Leak Site Case Closure Gavilan College, 5055 Santa Teresa Blvd., Gilroy, CA; Case No. 14-352, SCVWDID No. 11S3E18R01f. July 5, 2012.

SECTION 6.0 LEAD AGENCY AND CONSULTANTS

LEAD AGENCY

Gavilan Joint Community College District
Joseph Keeler, Vice President of Administrative Services

CONSULTANTS

Environmental Consultants and Planners
Judy Shanley, President
Michael Lisenbee, Project Manager
Zach Dill, Graphic Artist

Live Oak Associates, Inc.
Biology
Rick Hopkins, Ph.D., Principal, Senior Ecologist
Pamela Peterson, Sr. Project Manager, Plant and Wetland Ecologist
Katrina Krakow, M.S., Assistant Project Manager, Staff Ecologist

Holman & Associates
Cultural Resources
Miley Holman, Principal