Course Outline

COURSE: PHYS 1 DIVISION: 10 ALSO LISTED AS:

TERM EFFECTIVE: Fall 2017 CURRICULUM APPROVAL DATE: 11/28/2016

SHORT TITLE: INTRO TO PHYSICS

LONG TITLE: Introduction to Physics

<table>
<thead>
<tr>
<th>Units</th>
<th>Number of Weeks</th>
<th>Type</th>
<th>Contact Hours/Week</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>18</td>
<td>Lecture: 3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab: 3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other: 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 6</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION:

This course is an introduction to the fundamental physical principles that control the world around us. Students will explore the fundamental principles of physics, their historical development, their application to everyday phenomena, and their impact upon political, social, and environmental issues. Laboratory exercises will explore the everyday world. ADVISORY: Mathematics 430.

PREREQUISITES:

COREQUISITES:

CREDIT STATUS: D - Credit - Degree Applicable

GRADING MODES

L - Standard Letter Grade

REPEATABILITY: N - Course may not be repeated

SCHEDULE TYPES:

02 - Lecture and/or discussion
03 - Lecture/Laboratory
04 - Laboratory/Studio/Activity

STUDENT LEARNING OUTCOMES:

1. Identify, describe, compare and contrast the various units of numbers and their significance.
Measure of assessment: Exam, lab

12/5/2016
2. Identify, describe, compare and contrast random and systematic errors.
Measure of assessment: Exam, Lab

Institution Outcome Map
This section does not contain any data.

3. Describe the Scientific Method.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2016
 Semester: Spring

4. Identify, describe, compare and contrast distance, displacement, speed, velocity and acceleration.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2016
 Semester: Spring

5. Identify, describe, compare and contrast forces, Newton's Laws, conservation of momentum, conservation of energy, power, and work.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2016
 Semester: Spring

6. Describe the structure of an atom.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2014
 Semester: Spring

7. Identify, describe, compare and contrast the structure of and differences between various states of matter.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2016
 Semester: Spring

8. Describe, compare and contrast temperature, heat energy, heat transfer, and the first and second Laws of Thermodynamics.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2016
 Semester: Spring

9. Describe, identify, compare and contrast longitudinal, transverse, sound, and light waves.
Measure of assessment: Exam, Lab

10. Describe, compare and contrast electric and magnetic fields, resistance, current, and voltage.
Measure of assessment: Exam, Lab

Year assessed, or planned year of assessment: 2016
 Semester: Spring

CONTENT, STUDENT PERFORMANCE OBJECTIVES, OUT-OF-CLASS ASSIGNMENTS
Curriculum Approval Date: 11/28/2016

3 lecture/3 lab Hours
CONTENT: Introduction, current issues, numbers, units, and error analysis. Lab: Measurements, perception, and errors.

STUDENT PERFORMANCE OBJECTIVES (SPO): The students will be able to identify and discuss the significance of units of various quantities, convert between systems of units, and analyze the various sources of error and their significance.

OUT-OF-CLASS ASSIGNMENTS: Reading and problems from the text.

6 lecture/6 lab Hours
CONTENT: One-dimensional motion. Lab: Acceleration of a vehicle.
SPO: The students will be able to identify, compare, and contrast distance, displacement, speed, velocity, acceleration, vectors, and scalars.

12/5/2016
OUT-OF-CLASS ASSIGNMENTS: Reading and problems from the text.
6 lecture/6 lab Hours
CONTENT: Forces and Newton's Laws. Lab: Speed of traffic on Santa Teresa Blvd.
SPO: The students will be able to discuss Newton's Laws and apply Newton's second law to accelerating and non-accelerating systems. The students will be able to identify, discuss, and describe the conditions for free-fall, the conditions for static and kinetic friction, the coefficients of friction, and the nature of air resistance.
OUT-OF-CLASS ASSIGNMENTS: Reading and problems from text.
6 lecture/6 lab Hours
CONTENT: Work, energy, power, and simple machines. Momentum. Lab: Food requirements for physical tasks.
SPO: Students will be able to discuss and describe the principle of conservation of energy, compare and contrast potential and kinetic energy, discuss work and power, and discuss and compare and contrast efficiency, mechanical advantage and types of simple machines. Students will be able to discuss the Impulse-Momentum Theorem, the principle of conservation of momentum, and compare and contrast elastic and inelastic collisions.
OUT-OF-CLASS ASSIGNMENTS: Reading and problems from the text.
3 lecture/3 lab Hours
CONTENT: Rotational and projectile motion. Lab: Force between masses.
SPO: Students will be able to discuss, compare and contrast the important parameters that characterize one-dimensional, two-dimensional, and rotational motion. Students will be able to describe and identify torques, conservation of energy and conservation of momentum in rotational motion.
OUT-OF-CLASS ASSIGNMENTS: Reading and problems from text.
3 lecture/3 lab Hours
SPO: Students will be able to compare and contrast solids, liquids, and vapors. Discuss stress, strain, and the elastic moduli of materials. Discuss the properties of liquids and vapors in terms of density, velocity, and pressure. Apply, compare, and contrast Bernoulli's theorem, Pascal's principle, and Archimede's principle.
OUT-OF-CLASS ASSIGNMENTS: Problems and reading from text.
6 lecture/6 lab Hours
CONTENT: Temperature, thermal energy, and thermodynamics. Lab: Bridge building; oral presentation and competition.
SPO: Students will be able to discuss, compare and contrast temperature and heat. Discuss the variables which control the physical behavior of vapors. Discuss, compare and contrast the mechanisms of heat transfer. Discuss thermal equilibrium and phase changes. Students will be able to discuss, compare and contrast the First and Second Laws of Thermodynamics, heat engines, and the conservation of energy.
OUT-OF-CLASS ASSIGNMENTS: Problems and reading from text.
3 lecture/3 lab Hours
SPO: Students will be able to discuss, compare and contrast the properties of waves. Discuss the potential energy of a spring, oscillations, and resonance. Apply wave mechanics to sound and ocean tides. Discuss the Doppler effect.
12/5/2016
OUT-OF-CLASS ASSIGNMENTS:
Reading and problems from text.
9 lecture/9 lab Hours
CONTENT: Electricity and magnetism. Lab: Final Project.
SPO: Students will be able to discuss, compare and contrast Coulomb's Law and Newton's Law of Gravitation. Discuss the electric field, electric potential and work, electrical potential energy and conservation of energy with charged particles. Students will be able to identify, compare and contrast basic elements of electric circuits. Discuss Ohm's Law and electric power. Students will be able to discuss the origin of magnetism, the magnetic fields and its effect on the motion of charged particles, and the operation of electric motors. Discuss induced magnetic fields due to electric currents.
OUT-OF-CLASS ASSIGNMENTS: Problems and reading from text.
3 lecture/3 lab Hours
CONTENT: Light and optics. Lab: Final Project
SPO: Students will be able to discuss electromagnetic waves and the electromagnetic spectrum. Discuss, compare and contrast refraction, reflection, interference, and diffraction. Discuss lenses, magnification and prisms.
OUT-OF-CLASS ASSIGNMENTS: Reading and problems from text.
3 lecture/3 lab Hours
Final project presentation and demonstration.

METHODS OF INSTRUCTION:
Lecture/discussion. Group projects. Laboratory exercises.

METHODS OF EVALUATION:
Writing assignments
Percent of total grade: 20.00 %
20% - 30% Lab reports
Objective examinations
Percent of total grade: 50.00 %
50% - 60% Multiple choice; True/false; Completion; Other: Essay
Other methods of evaluation
Percent of total grade: 20.00 %
20% - 30% Final project.

REPRESENTATIVE TEXTBOOKS:
Required Representative Textbooks
ISBN: 978-0321909107
Reading Level of Text, Grade: 12 Verified by: Jennifer Nari

ARTICULATION and CERTIFICATE INFORMATION
Associate Degree:
GAV B1, effective 201170
12/5/2016
GAV B3, effective 201170

CSU GE:
- CSU B1, effective 201170
- CSU B3, effective 201170

IGETC:
- IGETC 5A, effective 201170
- IGETC 5C, effective 201170

CSU TRANSFER:
- Transferable CSU, effective 201170

UC TRANSFER:
- Transferable UC, effective 201170

SUPPLEMENTAL DATA:
Basic Skills: N
Classification: Y
Noncredit Category: Y
Cooperative Education:
Program Status: 1 Program Applicable
Special Class Status: N
CAN:
CAN Sequence:
CSU Crosswalk Course Department: PHYS
CSU Crosswalk Course Number: 1
Prior to College Level: Y
Non Credit Enhanced Funding: N
Funding Agency Code: Y
In-Service: N
Occupational Course: E
Maximum Hours:
Minimum Hours:
Course Control Number: CCC000158363
Sports/Physical Education Course: N
Taxonomy of Program: 190200