Course Outline

COURSE: HVAC 205 DIVISION: 50 ALSO LISTED AS:
TERM EFFECTIVE: Fall 2018 CURRICULUM APPROVAL DATE: 02/26/2018

SHORT TITLE: COMMERCIAL REFRIG/ICE MACHINES

LONG TITLE: Commercial Refrigeration and Ice Machines

<table>
<thead>
<tr>
<th>Units</th>
<th>Number of Weeks</th>
<th>Contact Hours/Week</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>18</td>
<td>Lecture: 3</td>
<td>Lecture: 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab: 3</td>
<td>Lab: 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other: 0</td>
<td>Other: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 6</td>
<td>Total: 108</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION:

This course introduces refrigeration and applications. Topics include defrost methods, safety and operational control, refrigerant piping, refrigerant recovery and charging, and leak testing. This course covers the installation and startup of common commercial refrigeration systems. Topics include display/storage boxes or cases, walk-in systems, and supermarket racks. In addition to that this course introduces the students to commercial ice machines. Emphasis is placed on dispensing machines, ice making equipment, electrical and mechanical operation sequences, control adjustment procedures, preventative maintenance, repair, and installation procedures using a variety of refrigerants and blends. PREREQUISITE: HVAC 201 and HVAC 202 with a grade of "C" or better.

PREREQUISITES:

 Completion of HVAC 201, as UG, with a grade of C or better.
 AND Completion of HVAC 202, as UG, with a grade of C or better.

COREQUISITES:

 CREDIT STATUS: D - Credit - Degree Applicable

GRADING MODES

 L - Standard Letter Grade

REPEATABILITY: N - Course may not be repeated

SCHEDULE TYPES:

 02 - Lecture and/or discussion
 03 - Lecture/Laboratory
 04 - Laboratory/Studio/Activity
STUDENT LEARNING OUTCOMES:
1. Evaluate and test walk-in and reach-in coolers.
Measure of assessment: demonstration, exam, homework
Year assessed, or planned year of assessment: 2019
Semester: Spring
2. Apply practical thermodynamics to maintain efficient operation of commercial refrigeration systems.
Measure of assessment: demonstration
Year assessed, or planned year of assessment: 2019
Semester: Spring
3. Apply the knowledge required for the EPA certification test.
Measure of assessment: exam, demonstration, homework
Year assessed, or planned year of assessment: 2019
Semester: Spring
4. Evaluate commercial refrigeration systems including determining energy savings methods.
Measure of assessment: demonstration, exam, homework
Year assessed, or planned year of assessment: 2019
Semester: Spring

CONTENT, STUDENT PERFORMANCE OBJECTIVES, OUT-OF-CLASS ASSIGNMENTS
Curriculum Approval Date: 02/26/2018
Lecture Content:
9 Hours
Content: EPA (Environmental Protection Agency) Certification Preparation; Ozone Depletion; Types of Refrigerants and their Effect on the Ozone Layer; Recovery, Recycling and Reclaiming Refrigerants; High and Low Pressure Appliances; Clean Air Act Amendments; EPA Universal Technicians Test
Student Performance Objectives: Discuss EPA regulations as they relate to refrigerants. Describe ozone depletion. Discuss popular refrigerants and their applications. Define the terms recover, recycle, and reclaim. Describe methods of recovering refrigerants, including active and passive methods. Discuss the Clean Air Act Amendments. Describe the skills required to pass the EPA Universal Technicians test.
9 Hours
Content: Different Types of Evaporators, Natural Draft Systems, Forced Draft Systems, Fin Spacing, Defrost Methods, Electric Defrost, OFF Cycle Defrost, Hot Gas Defrost
12 Hours
Content: Evaporator Pressure Regulators, Crankcase Pressure Regulators, Fan Cycle Switches, Low Pressure Switches, High Pressure Switches, Defrost Time Clocks, Solenoid Valves, Electrical Concepts, Accumulators, Receivers, Walk in Boxes, Reach in Cases
Student Performance Objectives: Distinguish between mechanical and electrical controls. Explain how and why mechanical controls function. Describe an automatic pumpdown system. Describe electrical controls that apply to refrigeration. Describe random, planned, hot gas, cool gas, and external heat defrost.
12 Hours
Student Performance Objectives: Describe the basic refrigeration cycle for ice flake machines. State the purpose of the water fill system and of a bin control in an ice flake machine. Explain the purpose of a flush...
cycle in an ice flake machine. Describe the purpose of a harvest cycle in an ice machine. State the purpose of microprocessor controls in ice machines. Discuss the importance of water and ice quality in ice making.

9 Hours
Student Performance Objectives: Describe a parallel refrigeration system. Describe a secondary-fluid refrigeration system. Explain what is meant by preserving liquid subcooling. Discuss walk-in refrigeration applications.

2 Hours
Final
Lab Content:
9 Hours
Content: EPA (Environmental Protection Agency) Certification Preparation; Types of Refrigerants and their Effect on the Ozone Layer; Equipment used to Recovery, Recycling and Reclaiming Refrigerants; High and Low Pressure Appliances; EPA Universal Technicians Test
Student Performance Objectives: Demonstrate two methods for recovering refrigerant from a system. Demonstrate how to correctly use a modern refrigerant recycling and recovery machine. Practice the skills required to pass the EPA Universal Technicians test.

9 Hours
Content: Different Types of Evaporators, Natural Draft Systems, Forced Draft Systems, Fin Spacing, Defrost Methods, Electric Defrost, OFF Cycle Defrost, Hot Gas Defrost
Student Performance Objectives: Determine the boiling temperature in an evaporator. Describe how different types of evaporators function. Evaluate whether a particular evaporator is performing properly.

12 Hours
Content: Evaporator Pressure Regulators, Crankcase Pressure Regulators, Fan Cycle Switches, Low Pressure Switches, High Pressure Switches, Defrost Time Clocks, Solenoid Valves, Electrical Concepts, Accumulators, Receivers, Walk in Boxes, Reach in Cases
Student Performance Objectives: Identify a evaporator pressure-regulating valve and a crankcase pressure-regulating valve and state their functions. Identify a solenoid valve and state its function. Demonstrate how to adjust a CPR valve in a typical refrigeration system.

12 Hours
Student Performance Objectives: Discuss and demonstrate basic troubleshooting for ice flake machines. Read and interpret ice production and performance charts for ice machines. Explain the sequence of operation of an ice machine. Explain what is meant by input/output troubleshooting for microprocessors. Discuss the difference between cleaning and sanitizing an ice machine and demonstrate those processes. Perform service on a commercial ice cube machine.

9 Hours
Student Performance Objectives: Determine the application and the approximate temperature range of a refrigeration system by its features. Perform troubleshooting on various display equipment systems.

2 Hours

METHODS OF INSTRUCTION:
Lecture, discussion, multi-media presentation, demonstration, guided practice.

OUT OF CLASS ASSIGNMENTS:
Required Outside Hours: 18
Assignment Description: Read corresponding information in Unit 9 of textbook as well as the EPA Handout. Complete Review Questions at end of Unit. Study for quizzes/examinations. Homework: Complete Workbook Exercises related to unit topics.
Required Outside Hours: 18
Assignment Description: Read corresponding information in Unit 21 of textbook. Complete Review Questions at end of Unit. Study for quizzes/examinations. Homework: Perform various troubleshooting exercises related to evaporator evaluation. Complete Workbook Exercises related to unit topics.
Required Outside Hours: 24
Assignment Description: Read corresponding information in Unit 25 of textbook. Complete Review Questions at end of Unit. Study for quizzes/examinations. Homework: Complete Workbook Exercises related to unit topics.
Required Outside Hours: 24
Assignment Description: Read corresponding information in Unit 27 of textbook. Complete Review Questions at end of Unit. Study for quizzes/examinations. Homework: Perform various troubleshooting exercises related to commercial ice machines. Complete Workbook Exercises related to unit topics.
Required Outside Hours: 18
Assignment Description: Read corresponding information in Unit 26 of textbook. Complete Review Questions at end of Unit. Study for quizzes/examinations. Homework: Complete Workbook Exercises related to unit topics.

METHODS OF EVALUATION:
Writing assignments
Percent of total grade: 20.00 %
Homework, Lab Reports
Problem-solving assignments
Percent of total grade: 20.00 %
Lab Projects
Skill demonstrations
Percent of total grade: 20.00 %
Lab Projects/Troubleshooting
Objective examinations
Percent of total grade: 40.00 %

REPRESENTATIVE TEXTBOOKS:
Required Representative Textbooks
ISBN: 978-1-305-57829-6
Reading Level of Text, Grade: 12th Verified by: MS Word
ISBN: 978-1305578708
Reading Level of Text, Grade: 12th Verified by: MS Word

ARTICULATION and CERTIFICATE INFORMATION
Associate Degree:
CSU GE:
IGETC:
CSU TRANSFER:
 Not Transferable
UC TRANSFER:
 Not Transferable
SUPPLEMENTAL DATA:
Basic Skills: N
Classification: Y
Noncredit Category: Y
Cooperative Education:
Program Status: 1 Program Applicable
Special Class Status: N
CAN:
CAN Sequence:
CSU Crosswalk Course Department:
CSU Crosswalk Course Number:
Prior to College Level: Y
Non Credit Enhanced Funding: N
Funding Agency Code: Y
In-Service: N
Occupational Course: C
Maximum Hours: 3
Minimum Hours: 1.5
Course Control Number:
Sports/Physical Education Course: N
Taxonomy of Program: 094600