Course Outline

COURSE: CSIS 45 DIVISION: 50 ALSO LISTED AS:

TERM EFFECTIVE: Spring 2017 CURRICULUM APPROVAL DATE: 04/25/2016

SHORT TITLE: C++ PROGRAMMING I

LONG TITLE: C++ Programming I

<table>
<thead>
<tr>
<th>Units</th>
<th>Number of Weeks</th>
<th>Type</th>
<th>Contact Hours/Week</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18</td>
<td>Lecture: 2</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab: 3</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other: 0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 5</td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION:

An introduction to the concepts and methods of computer programming using C++. Students will be introduced to procedural and object-oriented programming design methodology. Topics covered include variable and constant declarations, selection statements, repetition, functions and recursion, arrays, strings, pointers, and an introduction to classes and objects. This course will prepare students for the Programming II class. This course has the option of a letter grade or pass/no pass. (C-ID: COMP 122) ADVISORY: CSIS 42

PREREQUISITES:

COREQUISITES:

CREDIT STATUS: D - Credit - Degree Applicable

GRADING MODES

 L - Standard Letter Grade
 P - Pass/No Pass

REPEATABILITY: N - Course may not be repeated

SCHEDULE TYPES:

 02 - Lecture and/or discussion
 03 - Lecture/Laboratory
 04 - Laboratory/Studio/Activity
 05 - Hybrid
 72 - Dist. Ed Internet Delayed
STUDENT LEARNING OUTCOMES:

1. Analyze and explain the behavior of simple programs involving the fundamental C++ programming constructs.
 Measure: exams, discussion, programming problems
 PLO:1,2,3,4 ILO: 7,2,3,1
 GE-LO:
 Year assessed or anticipated year of assessment: 2015

2. Modify and expand short programs that use standard conditional and iterative control structures and functions.
 Measure: exams, homework, programming problems
 PLO: 4,3,2,1 ILO: 7,2,3
 GE-LO:
 Year assessed or anticipated year of assessment: 2015

3. Design, implement, test, and debug a program that uses each of the following fundamental programming constructs: basic computation, simple I/O, standard conditional and iterative structures, and the definition of functions.
 Measure: case studies, homework, programming problems
 PLO: 4,3,2,1 ILO: 7,2,3
 GE-LO:
 Year assessed or anticipated year of assessment: 2015

CONTENT, STUDENT PERFORMANCE OBJECTIVES, OUT-OF-CLASS ASSIGNMENTS

Curriculum Approval Date: 04/25/2016

Student Performance Objectives: List the main components of a computer. Define: a machine-language program, a high-level language program, a source program, and an object program. Explain the role of a compiler. Describe an operating system and its purpose. Explain linking. Define an algorithm. Discuss the main phases of the program design process. Name the main kinds of program errors and state what kinds of errors are discovered by the compiler. Discuss the following and explain how a C++ program utilizes them: variables, identifiers, assignments, input and output, and data types and expressions. Explain ways to add flow of control to your programs.

Out of Class Assignments: Read Introduction to Computers and C++ Programming I chapter. Read chapter on C++ Basics. HWand Lab: Complete programming projects such as: entering the C++ program shown in the display and then modifying or changing the program as directed and writing a program that uses several types of variables.

(3 Hours) Lectures: More Flow of Control - Using Boolean Expressions, Multiway Branches, More About C++ Loop Statements, and Designing Loops.

Student Performance Objectives: Describe the purpose of a Boolean expression in C++ programming. Name two kinds of statements in C++ that alter the order in which actions are performed and give some examples. Define: a switch statement, a break statement, a block, and a loop statement. Explain the commonly used methods for terminating an 'input loop'.

Out of Class Assignments: Read chapter on More Flow of Control. HW and Lab: Complete programming problems utilizing the concepts covered in class.

Student Performance Objectives: Describe the top-down design method. Demonstrate some of the C++ predefined functions. Explain and demonstrate several of your own functions. Define the term procedural
abstraction. Discuss what is meant by overloading the function name. Define a ‘void’ function in C++ programming. Explain the ‘call-by-reference’ mechanism. Define a driver program and a stub and demonstrate how they are used for debugging.

Out of Class Assignments: Read chapter on procedural abstraction and functions that return a value. Read functions for all subtasks chapter. HW and Lab: Complete programming problems utilizing the concepts covered in class.

Student Performance Objectives: Define the C++ construct known as a 'stream'. Explain and demonstrate how to write programs using I/O. Name at least three member functions associated with an ‘iostream’ object and give examples of the usage of each. Define and utilize a 'manipulator'. Explain and demonstrate how an array is used, including sorting and searching.

Out of Class Assignments: Read chapter on I/O Streams as an Introduction to Objects and Classes and chapter on Arrays. HW and Lab: Complete programming problems utilizing concepts covered in class.

(6 Hours) Lectures: Strings and Vectors - An Array Type for Strings, The Standard 'string' Class, and Vectors. Pointers and Dynamic Arrays.

Student Performance Objectives: Discuss and demonstrate the use of strings and vectors as they relate to arrays. Define and utilize a ‘dynamic array’. Explain the concept of a pointer in C++.

Out of Class Assignments: Read chapters on Strings and Vectors and Pointers and Dynamic Arrays. HW and Lab: Complete programming problems specific to the concepts covered in class.

Student Performance Objectives: Define and explain the purpose of a 'structure'. Describe what makes for a good class definition and provide some techniques that will help define your classes based on modern programming practices. Define a 'class' and demonstrate its use with a member function. State what ADT means. Describe how inheritance support code reuse and make code easier to maintain. Discuss techniques for defining operations on objects as nonmember functions. Define a 'friend function' and demonstrate its use. Explain the difference between a (binary) operator and a function. Discuss and demonstrate the ways that you can combine arrays, structures, and classes to form intricately structured types such as arrays of structures, arrays of classes, and classes with arrays as member variables.

Out of Class Assignments: Read chapter on Defining Classes and read chapter on friends, overloaded operators, and classes in classes. HW and Lab: Complete programming problems specific to the material covered in class.

(6 Hours) Lectures: Separate Compilation and Namespaces. Pointers and Linked Lists - Nodes and Linked Lists and Stacks and Queues.

Student Performance Objectives: Discuss how a C++ program can be distributed across a number of files so that when some parts of the program change, only those parts need to be recompiled. Discuss and demonstrate the use of namespaces. Define 'nodes' and 'linked list' and demonstrate their applications. Discuss the data structures known as a 'stack' and a 'queue'.

Out of Class Assignments: Read chapters on Separate Compilation and Namespaces and Pointers and Linked Lists. HW and Lab: Complete programming problems specific to the concepts covered in class.

(6 Hours) Lectures: Recursion - Recursive Functions for Tasks, Recursive Functions for Values, and Thinking Recursively. Inheritance - Inheritance Basics, Inheritance Details, and Polymorphism.

Student Performance Objectives: Define, write, and use recursive functions. Explain the C++ process of ‘inheritance’. Discuss what ‘polymorphism’ refers to and apply its function. Explain why you cannot assign a base class object to a derived class variable.

Out of Class Assignments: Read chapter on Recursion and chapter on Inheritance. HW and Lab: Complete programming problems specific to the material covered in class.

Student Performance Objectives: Discuss the purpose of 'exception-handling'. Describe what happens when an exception is never caught. Discuss C++ templates and demonstrate their application. Name the main kinds of ’iterators’. Explain the major difference between a ‘vector’ and a 'list'.
Out of Class Assignments: Read chapters on Exception Handling, Templates, and Standard Template Library. HW and Lab: Complete programming problems specific to the concepts covered in class. (2 Hours) Final.

METHODS OF INSTRUCTION:
Lectures, Computer Demonstrations, Programming Projects, Case Studies

METHODS OF EVALUATION:
The types of writing assignments required:
Written homework
Reading reports
Essay exams
The problem-solving assignments required:
Homework problems
Quizzes
Exams
The types of skill demonstrations required:
Class performance
Performance exams
The types of objective examinations used in the course:
Multiple choice
True/false
Matching items
Completion
Other category:
None
The basis for assigning students grades in the course:
Writing assignments: 5% - 20%
Problem-solving demonstrations: 30% - 70%
Skill demonstrations: 10% - 50%
Objective examinations: 5% - 20%
Other methods of evaluation: 0% - 0%

REPRESENTATIVE TEXTBOOKS:
Required:
Reading level of text, Grade: 12
Verified by: MS Word

ARTICULATION and CERTIFICATE INFORMATION
Associate Degree:
GAV E2, effective 200630
CSU GE:
IGETC:
CSU TRANSFER:
Transferable CSU, effective 200630
UC TRANSFER:
Transferable UC, effective 200630
SUPPLEMENTAL DATA:
Basic Skills: N
Classification: Y
Noncredit Category: Y
Cooperative Education:
Program Status: 1 Program Applicable
Special Class Status: N
CAN: CSCI18
CAN Sequence: XXXXXXXX
CSU Crosswalk Course Department: CSIS
CSU Crosswalk Course Number: 45
Prior to College Level: Y
Non Credit Enhanced Funding: N
Funding Agency Code: Y
In-Service: N
Occupational Course: B
Maximum Hours:
Minimum Hours:
Course Control Number: CCC000564665
Sports/Physical Education Course: N
Taxonomy of Program: 070710