Course Outline

COURSE: CSIS 27 DIVISION: 50 ALSO LISTED AS:

TERM EFFECTIVE: Fall 2019 CURRICULUM APPROVAL DATE: 04/09/2019

SHORT TITLE: JAVA PROGRAMMING II

LONG TITLE: Java Programming II

<table>
<thead>
<tr>
<th>Units</th>
<th>Number of Weeks</th>
<th>Contact Hours/Week</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18</td>
<td>Lecture: 3</td>
<td>Lecture: 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab: 0</td>
<td>Lab: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other: 0</td>
<td>Other: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 3</td>
<td>Total: 54</td>
</tr>
</tbody>
</table>

This course is a continuation of Java Programming I, intended for students majoring in programming and/or planning to transfer to a 4-year college or university. This course will cover topics discussed in Java Programming I in more detail. Emphasis will be placed on implementation and analysis of algorithms and abstract data types: lists, queues, stacks, arrays, trees, priority queues, heaps, tables, hashing, balanced trees, graphs, searching and sorting, and recursion. (C-ID: COMP 132) PREREQUISITE: CSIS 24 Java Programming I, or CSIS 45, or equivalent experience.

PREREQUISITES:
Completion of CSIS 24, as UG, with a grade of C or better.

OR
Completion of CSIS 45, as UG, with a grade of C or better.

COREQUISITES:

CREDIT STATUS: D - Credit - Degree Applicable

GRADING MODES
L - Standard Letter Grade

REPEATABILITY: N - Course may not be repeated

SCHEDULE TYPES:
02 - Lecture and/or discussion
05 - Hybrid
72 - Dist. Ed Internet Delayed
STUDENT LEARNING OUTCOMES:

1. Explain the representation and use of primitive data types and built in data structures
 Measure of assessment: exams, discussion, homework exercises
 Year assessed, or planned year of assessment: 2018
 Semester: Fall

2. Describe and demonstrate how the various data structures are allocated and used in memory.
 Measure of assessment: exams, programming problems, homework exercises
 Year assessed, or planned year of assessment: 2018
 Semester: Fall

3. Describe and utilize common applications for a variety of data structures.
 Measure of assessment: exams, programming problems, homework exercises
 Year assessed, or planned year of assessment: 2018

CONTENT, STUDENT PERFORMANCE OBJECTIVES, OUT-OF-CLASS ASSIGNMENTS

Curriculum Approval Date: 04/09/2019

3 Hours
Content: Java Review
Program Design: Pseudocode, Coding, Documentation and Style, Testing and Debugging
Object-Oriented Design: Goals, Principles, and Patterns, Object-Oriented Design Goals, Object-Oriented Design Principles, Design Patterns, Inheritance, Polymorphism and Dynamic Dispatch, Inheritance Hierarchies, Interfaces and Abstract Classes
Student Performance Objectives: Justify the philosophy of object-oriented design and the concepts of encapsulation, abstraction, inheritance, and polymorphism. Design, implement, test, and debug simple programs in an object-oriented programming language.

3 Hours
Content: Fundamental Data Structures: Using Arrays, Sorting an Array, javutil Methods for Arrays and Random Numbers, Simple Cryptography with Character Arrays, Two-Dimensional Arrays, Singly Linked Lists, Circularly Linked Lists
Student Performance Objectives:

3 Hours
Content: Doubly Linked Lists: Implementing a Doubly Linked List Class, Equivalence Testing with Arrays, Equivalence Testing with Linked Lists, Cloning Data Structures, Cloning Arrays, Cloning Linked Lists
Student Performance Objectives:

3 Hours
Content: Recursion: Illustrative Examples, The Factorial Function, Drawing an English Ruler, Binary Search
Student Performance Objectives: Describe the concept of recursion and give examples of its use. Determine when a recursive solution is appropriate for a problem.

3 Hours
Student Performance Objectives:
6 Hours
Content: Stacks, Queues, and Deques
Stacks: The Stack Abstract Data Type, A Simple Array-Based Stack Implementation, Implementing a Stack with a Singly Linked List, Reversing an Array Using a Stack, Matching Parentheses and HTML Tags
Queues: The Queue Abstract Data Type, Array-Based Queue Implementation, Implementing a Queue with a Singly Linked List, A Circular Queue, Double-Ended Queues
Deques: The Deque Abstract Data Type, Implementing a Deque, Deques in the Java Collections Framework
Student Performance Objectives:

6 Hours
Content: List and Iterator ADTs: The List ADT, Array Lists, Dynamic Arrays, Java's StringBuilder class
Student Performance Objectives: Describe how iterators access the elements of a container.

3 Hours
Content: Trees: General Trees, Tree Definitions and Properties, The Tree Abstract Data Type, Computing Depth and Height, Binary Trees, The Binary Tree Abstract Data Type, Properties of Binary Trees
Implementing Trees: Linked Structure for Binary Trees, Array-Based Representation of a Binary Tree, Linked Structure for General Trees, Tree Traversal, Algorithms, Preorder and Postorder Traversals of General Trees, Breadth-First Tree Traversal, Inorder Traversal of a Binary Tree, Implementing Tree Traversals in Java
Student Performance Objectives:

3 Hours
Content: Priority Queues: The Priority Queue Abstract Data Type, Implementing a Priority Queue, The Abstract Priority Queue Base Class, Implementing a Priority Queue with an Unsorted List, Implementing a Priority Queue with a Sorted List
Student Performance Objectives:

3 Hours
Content: Hash Tables: Hash Functions, Collision-Handling Schemes, Load Factors, Rehashing, and Efficiency, Java Hash Table Implementation
Student Performance Objectives: Write programs that use hash tables.

3 Hours
Student Performance Objectives:

6 Hours
Content: Sorting and Selection: Merge-Sort, Divide-and-Conquer, Quick-Sort, Randomized Quick-Sort, Additional Optimizations for Quick-Sort, Studying Sorting through an Algorithmic Lens, Lower Bound for Sorting, Linear-Time Sorting: Bucket-Sort and Radix-Sort
Student Performance Objectives:

6 Hours
Content: Memory Management: Stacks in the Java Virtual Machine, Allocating Space in the Memory Heap, Garbage Collection, Memory Hierarchies and Caching
Student Performance Objectives:

2 Hours
METHODS OF INSTRUCTION:
Lecture, computer demonstration, hands on exercises and practices.

OUT OF CLASS ASSIGNMENTS:
Required Outside Hours: 34
Assignment Description: Reading the textbook.
Required Outside Hours: 70
Assignment Description: Working on sample programs, homework programs, and projects.

METHODS OF EVALUATION:
Problem-solving assignments
Percent of total grade: 40.00 %
Problem-solving demonstrations: 30% - 60% Homework problems, Programming projects, Quizzes, Exams
Skill demonstrations
Percent of total grade: 50.00 %
Skill demonstrations: 40% - 60% Demonstration, Performance exams
Objective examinations
Percent of total grade: 10.00 %

REPRESENTATIVE TEXTBOOKS:
ISBN: 0134831691
Reading Level of Text, Grade: 12+ Verified by: MS Word
ARTICULATION and CERTIFICATE INFORMATION

Associate Degree:

CSU GE:
- CSU B3, effective 201970
- CSU B8, effective 201970
- CSU E1, effective 201970

IGETC:

CSU TRANSFER:
- Transferable CSU, effective 201570

UC TRANSFER:
- Not Transferable

SUPPLEMENTAL DATA:

Basic Skills: N
Classification: Y
Noncredit Category: Y
Cooperative Education:
Program Status: 1 Program Applicable
Special Class Status: N
CAN:
CAN Sequence:
CSU Crosswalk Course Department: CST
CSU Crosswalk Course Number: 238
Prior to College Level: Y
Non Credit Enhanced Funding: N
Funding Agency Code: Y
In-Service: N
Occupational Course: E
Maximum Hours: 3
Minimum Hours: 3
Course Control Number: CCC000562532
Sports/Physical Education Course: N
Taxonomy of Program: 070600